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LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Determine whether a regression experiment would be useful
in a given instance.

Formulate a regression model.
Compute a regression equation.

Compute the covariance and the correlation coefficient of two
random variables.

Compute confidence intervals for regression coefficients.
Compute a prediction interval for a dependent variable.
Test hypotheses about regression coefficients.

Conduct an ANOVA experiment using regression results.

Analyze residuals to check the validity of assumptions about
the regression model.

Solve regression problems using spreadsheet templates.
Use the LINEST function to carry out a regression.
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-1 Using Statistics

In 1855, a 33-year-old Englishman settled
down to a life of leisure in London after several
years of travel throughout Europe and Africa.
The boredom brought about by a comfortable
life induced him to write, and his first book was, naturally, The Art of Travel. As his
intellectual curiosity grew, he shifted his interests to science and many years later
published a paper on heredity, “Natural Inheritance” (1889). He reported his discov-
ery that sizes of seeds of sweet pea plants appeared to “revert,” or “regress,” to the
mean size in successive generations. He also reported results of a study of the rela-
tionship between heights of fathers and the heights of their sons. A straight line was
fit to the data pairs: height of son versus height of father. Here, too, he found a
“regression to mediocrity”: The heights of the sons represented a movement away
from their fathers, toward the average height. The man was Sir Francis Galton, a
cousin of Charles Darwin. We credit him with the idea of statistical regression.

While most applications of regression analysis may have little to do with the
“regression to the mean” discovered by Galton, the term regression remains. It now
refers to the statistical technique of modeling the relationship between variables.
In this chapter on simple linear regression, we model the relationship between
two variables: a dependent variable, denoted by Y, and an independent variable,
denoted by X. The model we use is a straight-line relationship between Xand Y. When
we model the relationship between the dependent variable Y'and a set of several inde-
pendent variables, or when the assumed relationship between Yand Xis curved and
requires the use of more terms in the model, we use a technique called multiple regression.
This technique will be discussed in the next chapter.

Figure 10-1 is a general example of simple linear regression: fitting a straight
line to describe the relationship between two variables X and Y. The points on the
graph are randomly chosen observations of the two variables X and Y, and the
straight line describes the general movement in the data—an increase in Y correspon-
ding to an increase in X. An inverse straight-line relationship is also possible, con-
sisting of a general decrease in Yas X increases (in such cases, the slope of the line is
negative).

Regression analysis is one of the most important and widely used statistical tech-
niques and has many applications in business and economics. A firm may be inter-
ested in estimating the relationship between advertising and sales (one of the most
important topics of research in the field of marketing). Over a short range of values—
when advertising is not yet overdone, giving diminishing returns—the relationship
between advertising and sales may be well approximated by a straight line. The
X variable in Figure 10-1 could denote advertising expenditure, and the Y variable
could stand for the resulting sales for the same period. The data points in this case would
be pairs of observations of the form x, = $75,570, y, = 134,679 units; x, = $83,090,
9, = 151,664 units; etc. That is, the first month the firm spent $75,570 on advertising,
and sales for the month were 134,679 units; the second month the company spent
$83,090 on advertising, with resulting sales of 151,664 units for that month; and so on
for the entire set of available data.

The data pairs, values of X paired with corresponding values of Y] are the points
shown in a sketch of the data (such as Figure 10-1). A sketch of data on two variables
is called a scatter plot. In addition to the scatter plot, Figure 10-1 shows the
straight line believed to best show how the general trend of increasing sales corre-
sponds, in this example, to increasing advertising expenditures. This chapter will
teach you how to find the best line to fit a data set and how to use the line once you
have found it.
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FIGURE 10-1 Simple Linear Regression
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Although, in reality, our sample may consist of all available information on the two
variables under study, we always assume that our data set constitutes a random sample
of observations from a population of possible pairs of values of Xand Y. Incidentally,
in our hypothetical advertising sales example, we assume no carryover effect of adver-
tising from month to month; every month’s sales depend only on that month’s level of
advertising. Other common examples of the use of simple linear regression in business
and economics are the modeling of the relationship between job performance (the
dependent variable Y) and extent of training (the independent variable X); the rela-
tionship between returns on a stock (Y) and the riskiness of the stock (X); and the
relationship between company profits (¥) and the state of the economy (X).

Model Building

Like the analysis of variance, both simple linear regression and multiple regression

are statistical models. Recall that a statistical model is a set of mathematical formulas

and assumptions that describe a real-world situation. We would like our model to
FIGURE 10-2 explain as much as possible about the process underlying our data. However, due to
A Statistical Model the uncertainty inherent in all real-world situations, our model will probably not
explain everything, and we will always have some remaining errors. The errors are
due to unknown outside factors that affect the process generating our data.
Data A good statistical model is parsimonious, which means that it uses as few mathemat-
ical terms as possible to describe the real situation. The model captures the systematic
behavior of the data, leaving out the factors that are nonsystematic and cannot be fore-
seen or predicted—the errors. The idea of a good statistical model is illustrated in
Statistical Figure 10-2. The errors, denoted by e, constitute the random component in the model.

model In a sense, the statistical model breaks down the data into a nonrandom, systematic
component, which can be described by a formula, and a purely random component.
. How do we deal with the errors? This is where probability theory comes in. Since our
Systematic model, we hope, captures everything systematic in the data, the remaining random errors
component .
rar are probably due to a large number of minor factors that we cannot trace. We assume that
andom

the random errors € are normally distributed. If we have a properly constructed model, the
resulting observed errors will have an average of zero (although few, if any, will actually
Vleels s equal zero), and they should also be independent of one another. We note that the assump-
everything systematic . R . . .
in the data, leaving tion of a normal distribution of the errors is not absolutely necessary in the regression
purely random errors model. The assumption is made so that we can carry out statistical hypothesis tests using
the F'and ¢ distributions. The only necessary assumption is that the errors € have mean
zero and a constant variance o and that they be uncorrelated with one another. In the

errors
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FIGURE 10-3  Steps in Building a Statistical Model
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next section, we describe the simple linear regression model. We now present a general
model-building methodology.

First, we propose a particular model to describe a given situation. For example,
we may propose a simple linear regression model for describing the relationship
between two variables. Then we estimate the model parameters from the random
sample of data we have. The next step is to consider the observed errors resulting
from the fit of the model to the data. These observed errors, called residuals, repre-
sent the information in the data not explained by the model. For example, in the
ANOVA model discussed in Chapter 9, the within-group variation (leading to SSE
and MSE) is due to the residuals. If the residuals are found to contain some nonran-
dom, systematic component, we reevaluate our proposed model and, if possible,
adjust it to incorporate the systematic component found in the residuals; or we may
have to discard the model and try another. When we believe that model residuals
contain nothing more than pure randomness, we use the model for its intended pur-
pose: prediction of a variable, control of a variable, or the explanation of the relation-
ships among variables.

In the advertising sales example, once the regression model has been estimated
and found to be appropriate, the firm may be able to use the model for predicting sales
for a given level of advertising within the range of values studied. Using the model, the
firm may be able to control its sales by setting the level of advertising expenditure. The
model may help explain the effect of advertising on sales within the range of values
studied. Figure 10-3 shows the usual steps of building a statistical model.

10-2 The Simple Linear Regression Model

Recall from algebra that the equation of a straight line is Y= 4 + BX, where 4is the Y’
intercept and B is the slope of the line. In simple linear regression, we model the rela-
tionship between two variables X and Y as a straight line. Therefore, our model must
contain two parameters: an intercept parameter and a slope parameter. The usual
notation for the population intercept is 3, and the notation for the population
slope is B,. If we include the error term €, the population regression model is given
in equation 10-1.

© The McGraw-Hill
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The population simple linear regression model is
Y=B,+ P X+ e (10-1)

where Y'is the dependent variable, the variable we wish to explain or predict;
X is the independent variable, also called the predictor variable; and e is the
error term, the only random component in the model and thus the only
source of randomness in Y.

The model parameters are as follows:

B, is the Y intercept of the straight line given by Y = B, + B,X (the line
does not contain the error term).

B, is the slope of the line Y = B, + B, X.

The simple linear regression model of equation 10-1 is composed of two
components: a nonrandom component, which is the line itself, and a purely random
component—the error term e. This is shown in Figure 10-4. The nonrandom part of
the model, the straight line, is the equation for the mean of Y, given X. We denote the
conditional mean of Y, given X, by E(Y| X). Thus, if the model is correct, the average
value of Y for a given value of Xfalls right on the regression line. The equation for the
mean of Y] given X is given as equation 10-2.

The conditional mean of Yis

EQYIX) = By + BiX (10-2)

Comparing equations 10-1 and 10-2, we see that our model says that each
value of Y comprises the average Y for the given value of X (this is the straight line),
plus a random error. We will sometimes use the simplified notation E(Y) for the
line, remembering that this is the conditional mean of Y for a given value of X. As
X increases, the average population value of Y also increases, assuming a positive
slope of the line (or decreases, if the slope is negative). The actual population value
of Yis equal to the average Y conditional on X, plus a random error . We thus
have, for a given value of X,

Y = Average Y for given X + Error

Figure 10-5 shows the population regression model.
We now state the assumptions of the simple linear regression model.

Model assumptions:

1. The relationship between X and Y is a straight-line relationship.

2. The values of the independent variable X are assumed fixed (not
random); the only randomness in the values of Y comes from the
error term e.
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FIGURE 10-5 Population Regression Line
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3. The errors € are normally distributed with mean 0 and a constant
variance o2. The errors are uncorrelated (not related) with one
another in successive observations.! In symbols:

e ~ N(0, o?) (10-3)

Figure 10-6 shows the distributional assumptions of the errors of the simple linear
regression model. The population regression errors are normally distributed about
the population regression line, with mean zero and equal variance. (The errors are
equally spread about the regression line; the error variance does not increase or
decrease as Xincreases.)

The simple linear regression model applies only if the true relationship between
the two variables X and Y'is a straight-line relationship. If the relationship is curved
(curvilinear), then we need to use the more involved methods of the next chapter. In
Figure 10-7, we show various relationships between two variables. Some are straight-
line relationships that can be modeled by simple linear regression, and others are not.

So far, we have described the population model, that is, the assumed true rela-
tionship between the two variables Xand Y. Our interest is focused on this unknown
population relationship, and we want to estimate it, using sample information. We
obtain a random sample of observations on the two variables, and we estimate the
regression model parameters 8, and B, from this sample. This is done by the method
of least squares, which is discussed in the next section.

© The McGraw-Hill
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FIGURE 10-6
Distributional Assumptions
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10-1.
10-2.
10-3.
10-4.

What is a statistical model?

What are the steps of statistical model building?

What are the assumptions of the simple linear regression model?
Define the parameters of the simple linear regression model.

!The idea of statistical correlation will be discussed in detail in Section 10-5. In the case of the regression errors, we
assume that successive errors €, €, €, . . . are uncorrelated: they are not related with one another; there is no trend, no
joint movement in successive errors. Incidentally, the assumption of zero correlation together with the assumption of a
normal distribution of the errors implies the assumption that the errors are independent of one another. Independence
implies noncorrelation, but noncorrelation does not imply independence, except in the case of a normal distribution (this
is a technical point).

PROBLEMS
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FIGURE 10-7 Some Possible Relationships between X and Y
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CHAPTER 15

10-5. What is the conditional mean of ¥, given X?
10-6. What are the uses of a regression model?
10-7. What are the purpose and meaning of the error term in regression?

10-8. A simple linear regression model was used for predicting the success of
private-label products, which, according to the authors of the study, now account for
20% of global grocery sales, and the per capita gross domestic product for the coun-
try at which the private-label product is sold.? The regression equation is given as

PLS = B GDPC + ¢

where PLS = private label success, GDPC = per capita gross domestic product, § =
regression slope, and € = error term. What kind of regression model is this?

10-3 Estimation: The Method of Least Squares

We want to find good estimates of the regression parameters 3, and 3,. Remember the
properties of good estimators, discussed in Chapter 5. Unbiasedness and efficiency are
among these properties. A method that will give us good estimates of the regression

2Lien Lamey et al., “How Business Cycles Contribute to Private-Label Success: Evidence from the United States and
Europe,” Journal of Marketing 71 (January 2007), pp. 1-15.
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coefficients is the method of least squares. The method of least squares gives us the
best linear unbiased estimators (BLUE) of the regression parameters 8, and ;. These
estimators both are unbiased and have the lowest variance of all possible unbiased
estimators of the regression parameters. These properties of the least-squares estima-
tors are specified by a well-known theorem, the Gauss-Markov theorem. We denote the
least-squares estimators by 4, and &,.

The least-squares estimators are

estimates

by — B
estimates

by — B

The estimated regression equation is
Y=b,+bX+e (10-4)

where b, estimates B, b, estimates 3,, and e stands for the observed
errors—the residuals from fitting the line b, + b, X to the data set of
n points.

In terms of the data, equation 10—4 can be written with the subscript i to signify each
particular data point:

Vi = byt bxi+ e (10-5)

where i=1,2, ..., n. Then ¢, is the first residual, the distance from the first data point
to the fitted regression line; ¢, is the distance from the second data point to the line;
and so on to ¢,, the nth error. The errors ¢; are viewed as estimates of the true popu-
lation errors €;. The equation of the regression line itself is as follows:

The regression line is
Y = b, + bX (10-6)

where )A’(pronounced “Y hat”) is the Y value lying on the fitted regression
line for a given X.

Thus, y, is the fitted value corresponding to x;, that is, the value of y, without the error
¢,and soon forall i = 1,2,..., n The fitted value Yis also called the predicted value
of Y because if we do not know the actual value of ¥, it is the value we would predict
for a given value of X, using the estimated regression line.

Having defined the estimated regression equation, the errors, and the fitted val-
ues of ¥, we will now demonstrate the principle of least squares, which gives us the
BLUE regression parameters. Consider the data set shown in Figure 10-8(a). In parts
(8), (), and (d) of the figure, we show different lines passing through the data set and
the resulting errors ¢;.

As can be seen from Figure 10-8, the regression line proposed in part (b)
results in very large errors. The errors corresponding to the line of part (¢) are
smaller than the ones of part (4), but the errors resulting from using the line pro-
posed in part (d) are by far the smallest. The line in part (d) seems to move with
the data and minimize the resulting errors. This should convince you that the line
that best describes the trend in the data is the line that lies “inside” the set of

© The McGraw-Hill
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FIGURE 10-8 A Data Set of X and Y Pairs, and Different Proposed Straight Lines to Describe the Data
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points; since some of the points lie above the fitted line and others below the line,
some errors will be positive and others will be negative. If we want to minimize
all the errors (both positive and negative ones), we should minimize the sum of the
squared errors (SSE, as in ANOVA). Thus, we want to find the least-squares line—the
line that minimizes SSE. We note that least squares is not the only method of fit-
ting lines to data; other methods include minimizing the sum of the absolute
errors. The method of least squares, however, is the most commonly used method
to estimate a regression relationship. Figure 10-9 shows how the errors lead to the
calculation of SSE.
We define the sum of squares for error in regression as

SSE = _ ¢ = 2(}’1‘ -5 (10-7)

Figure 10-10 shows different values of SSE corresponding to values of 4, and &,. The
least-squares line is the particular line specified by values of 4, and 4, that minimize
SSE, as shown in the figure.



Aczel-Sounderpandian: 10. Simple Linear Text © The McGraw-Hill ‘ @
Complete Business Regression and Correlation Companies, 2009
Statistics, Seventh Edition

Simple Linear Regression and Correlation 417
FIGURE 10-9 Regression Errors Leading to SSE
y Data point
i, YD)
A o
I}\egression line
Error e; Y =by+ b, X
~ '
Errore=Y— V. Y, the predicted Y for X;

SSE =3(e)2= 3(Y, - ¥ )3
(sum over all dataS

FIGURE 10-10 The Particular Values b, and b, That Minimize SSE
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Calculus is used in finding the expressions for 4, and 4, that minimize SSE. These
expressions are called the normal equations and are given as equations 10-8.% This system
of two equations with two unknowns is solved to give us the values of 4, and &, that
minimize SSE. The results are the least-squares estimators 4, and &, of the simple linear
regression parameters 3, and (3;.

The normal equations are

n
>y =nby + by XX
‘ =

n n n
Z,Xf)’i = boZ,Xi + b Z,X,Z (10-8)

3We leave it as an exercise to the reader with background in calculus to derive the normal equations by taking the
partial derivatives of SSE with respect to 4, and 4, and setting them to zero.
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Before we present the solutions to the normal equations, we define the sums of
squares SSyand SS, and the sum of the cross-products SS,. These will be very useful
in defining the least-squares estimates of the regression parameters, as well as in other
regression formulas we will see later. The definitions are given in equations 10-9.

Definitions of sums of squares and cross-products useful in regression analysis:

_ (=x)?
$Sx = 2 (x — X = 2xF -

E 2
SSy = Dy — y)P = ZyL%

SSy = 2(x =Xy —y) = Xy

The first definition in each case is the conceptual one using squared distances
from the mean; the second part is a computational definition. Summations
are over all data.

_ G0y (10-9)

We now give the solutions of the normal equations, the least-squares estimators

by and b,.

Least-squares regression estimators include the slope
SS
bl = v
SSy
and the intercept
bo = y_ b])? (10—10)

The formula for the estimate of the intercept makes use of the fact that the least-squares
line always passes through the point (x, y), the intersection of the mean of Xand the mean
of Y.

Remember that the obtained estimates §, and &, of the regression relationship are
just realizations of estimators of the true regression parameters 3, and 3,. As always,
our estimators have standard deviations (and variances, which, by the Gauss-Markov
theorem, are as small as possible). The estimates can be used, along with the assump-
tion of normality, in the construction of confidence intervals for, and the conducting
of hypothesis tests about, the true regression parameters 3, and ;. This will be done
in the next section.

We demonstrate the process of estimating the parameters of a simple linear
regression model in Example 10-1.

EXAMPLE 10-1

American Express Company has long believed that its cardholders tend to travel
more extensively than others—both on business and for pleasure. As part of a com-
prehensive research effort undertaken by a New York market research firm on behalf
of American Express, a study was conducted to determine the relationship between
travel and charges on the American Express card. The research firm selected a ran-
dom sample of 25 cardholders from the American Express computer file and
recorded their total charges over a specified period. For the selected cardholders,
information was also obtained, through a mailed questionnaire, on the total number
of miles traveled by each cardholder during the same period. The data for this study
are given in Table 10-1. Figure 10-11 is a scatter plot of the data.
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As can be seen from the figure, it seems likely that a straight line will describe the
trend of increase in dollar amount charged with increase in number of miles traveled.
The least-squares line that fits these data is shown in Figure 10-12.

We will now show how the least-squares regression line in Figure 10-12 is
obtained. Table 10-2 shows the necessary computations. From equations 10-9, using
sums at the bottom of Table 10-2, we get

s (Za)? . 79,4487
SSx= Da* — &9 _ 293,426,946 — ——— = 40,947,557.84
n
and
(Z4)(2y) 79,448)(106,605
SSxy= D xy — I 390,185,014 — % = 51,402,852.4
n
FIGURE 10-11 Data for the American Express Study
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FIGURE 10-12 Least-Squares Line for the American Express Study
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Solution

TABLE 10-1

American Express Study

Data
Miles Dollars
1,211 1,802
1,345 2,405
1,422 2,005
1,687 2,511
1,849 2,332
2,026 2,305
2,133 3,016
2,253 3,385
2,400 3,090
2,468 3,694
2,699 3,371
2,806 3,998
3,082 3,555
3,209 4,692
3,466 4,244
3,643 5,298
3,852 4,801
4,033 5,147
4,267 5,738
4,498 6,420
4,533 6,059
4,804 6,426
5,090 6,321
5,233 7,026
5,439 6,964
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TABLE 10-2 The Computations Required for the American Express Study

Miles X Dollars Y X? Y2 Xy
1,211 1,802 1,466,521 3,247,204 2,182,222
1,345 2,405 1,809,025 5,784,025 3,234,725
1,422 2,005 2,022,084 4,020,025 2,851,110
1,687 2,511 2,845,969 6,305,121 4,236,057
1,849 2,332 3,418,801 5,438,224 4,311,868
2,026 2,305 4,104,676 5,313,025 4,669,930
2,133 3,016 4,549,689 9,096,256 6,433,128
2,253 3,385 5,076,009 11,458,225 7,626,405
2,400 3,090 5,760,000 9,548,100 7,416,000
2,468 3,694 6,091,024 13,645,636 9,116,792
2,699 3,371 7,284,601 11,363,641 9,098,329
2,806 3,998 7,873,636 15,984,004 11,218,388
3,082 3,555 9,498,724 12,638,025 10,956,510
3,209 4,692 10,297,681 22,014,864 15,056,628
3,466 4,244 12,013,156 18,011,536 14,709,704
3,643 5,298 13,271,449 28,068,804 19,300,614
3,852 4,801 14,837,904 23,049,601 18,493,452
4,033 5,147 16,265,089 26,491,609 20,757,851
4,267 5,738 18,207,289 32,924,644 24,484,046
4,498 6,420 20,232,004 41,216,400 28,877,160
4,533 6,059 20,548,089 36,711,481 27,465,447
4,804 6,426 23,078,416 41,293,476 30,870,504
5,090 6,321 25,908,100 39,955,041 32,173,890
5,233 7,026 27,384,289 49,364,676 36,767,058
5,439 6,964 29,582,721 48,497,296 37,877,196
79,448 106,605 293,426,946 521,440,939 390,185,014

Using equations 10-10 for the least-squares estimates of the slope and intercept
parameters, we get

, SSiy _ 5140285240 _ o oo
7SSy 40,947,557.84 TTTUTT
and
106,605 (79,448 )
by =3 = bE = — = — 12553337776\ — = 274.8496866

Always carry out as many significant digits as you can in these computations. Here
we carried out the computations by hand, for demonstration purposes. Usually, all
computations are done by computer or by calculator. There are many hand calcula-
tors with a built-in routine for simple linear regression. From now on, we will present
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only the computed results, the least-squares estimates. The estimated least-squares
relationship for Example 10-1 is reporting estimates to the second significant decimal:

Y=274.85 + 126X + ¢ (10-11)

The equation of the line itself, that is, the predicted value of Y for a given X, is

Y = 274.85 + 1.26X (10-12)

The Template

Figure 10-13 shows the template that can be used to carry out a simple regression.
The X and Y data are entered in columns B and C. The scatter plot at the bottom
shows the regression equation and the regression line. Several additional statistics
regarding the regression appear in the remaining parts of the template; these are
explained in later sections. The error values appear in column D.

Below the scatter plot is a panel for residual analysis. Here you will find the
Durbin-Watson statistic, the residual plot, and the normal probability plot. The
Durbin-Watson statistic will be explained in the next chapter, and the normal prob-
ability plot will be explained later in this chapter. The residual plot shows that there
is no relationship between X and the residuals. Figure 10-14 shows the panel.

FIGURE 10-13  The Simple Regression Template
[Simple Regression.xls; Sheet: Regression]
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A ] B | ¢ | D |d H ] 1 g 1 k|t I M | N J o | P | a

+ Simple Regression |American Express Study |
z Quality |Mkt Share rz Coefficient of Determination
| 4 | X Y Error Confidence Interval for Slope r Coefficient of Correlation
[ 5 | 1] 1211 1802 | 694111 [[ 1 -« (1 = a) C.l. for g, |
[ 6 | 2[ 1345 2405 | 441726 || 95% | 125533 +or- 0.10285 | s(b,) [ 0.04972 | Standard Error of Slope
| 7 | 3 1422 2005 -54.9343 t| 25.2482
| 8 | 4 1687 2511 118.402 | Confidence Interval for Intercept p-value | 0.0000
| 9| 5| 1849 2332 | -263.962| [ 1 -« (1 — @) C.l. for B, |
[ 10| 6 2026 | 2305 | -513.156|| 95% | 27485 +or- 352369 | s(by) [ 170.337 | Standard Error of Intercept
11| 7| 2133 3016 | 63.5234
| 12 | 8| 2253 3385 281.883 | Prediction Interval for Y
| 13| 9| 2400 3090 [-197.651|[ 1—a« | X | (1 —a)Cl for ¥ given X |
| 14 | 10| 2468 3694 | 320.987 [ +or - s[ 318.158 | Standard Error of prediction
| 15 | 11| 2699 3371 -291.996
| 16 | 12| 2806 3998 200.684 | Prediction Interval for E[Y | X]
| 17 | 13| 3082 3555 | -588.788 1-a | X (1 —a) Cl.for E[Y1X] |
| 18 | 14[ 3209 4692 | 388.784 +or-
| 19| 15[ 3466 4244 | -381.837
| 20 | 16| 3643 5298 449.969 | ANOVA Table
[ 21| 17| 3852 4801 | -309.395 | | Source | sS df MS F | F.uca | p-value |
[ 22 | 18] 4033 5147 | -190.611 Regn. | 6.5E+07 1 6.5E+07 | 637.472 | 4.27934 [ 0.0000 |
| 23 | 19| 4267 5738 106.641 Error | 2328161 23 101224
| 24 | 20| 4498 6420 498.659 Total | 6.7E+07 24
| 25 | 21 4533 6059 93.7223
| 26 | 22| 4804 6426 120.527 | Scatter Plot, Regression Line and Regression Equation
[ 27 | 23] 5090 6321 | -343.499 y = 1.2553x + 274.85 )\
| 28 | 24| 5233 7026 181.989 8000
| 29 | 25| 5439 6964 -138.61

30 6000

31
E > 4000
| 33 | 2000
[ 34 |

35 0+ v v v v v J
36 | 0 1000 2000 3000 4000 5000 6000
Ea N X y,
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FIGURE 10-14

Chapter 10

Residual Analysis in the Template
[Simple Regression.xls; Sheet: Regression]

Al B [ ¢ T D d H T 1T T

J
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| I Y

Residual Analysis

Durbin-Watson statistic

o[22 |

-

Residual Plot
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PROBLEMS

10-9. Explain the advantages of the least-squares procedure for fitting lines to data.
Explain how the procedure works.

10-10. (A conceptually advanced problem) Can you think of a possible limitation
of the least-squares procedure?

10-11. An article in the Jjournal of Monetary Economics assesses the relationship
between percentage growth in wealth over a decade and a half of savings for baby
boomers of age 40 to 55 with these people’s income quartiles. The article presents a
table showing five income quartiles, and for each quartile there is a reported percent-
age growth in wealth. The data are as follows.*

Income quartile: 1 2 3 4 5
Wealth growth (%):  17.3 23.6 40.2 45.8 56.8

Run a simple linear regression of these five pairs of numbers and estimate a linear
relationship between income and percentage growth in wealth.

10-12. A financial analyst at Goldman Sachs ran a regression analysis of monthly
returns on a certain investment (Y") versus returns for the same month on the Standard &
Poor’s index (X). The regression results included SSy = 765.98 and SSy, = 934.49. Give
the least-squares estimate of the regression slope parameter.

“Edward N. Wolff, “The Retirement Wealth of the Baby Boom Generation,” Journal of Monetary Economics 54 ( January
2007), pp. 1-40.
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10-13. Recently, research efforts have focused on the problem of predicting a man-
ufacturer’s market share by using information on the quality of its product. Suppose
that the following data are available on market share, in percentage (Y), and product
quality, on a scale of 0 to 100, determined by an objective evaluation procedure (X):

X 27 39 73 66 33 43 47 55 60 68 70 75 82
y 2 3 10 9 4 6 5 8 7 9 10 13 12

Estimate the simple linear regression relationship between market share and product
quality rating.

10-14. A pharmaceutical manufacturer wants to determine the concentration of a
key component of cough medicine that may be used without the drug’s causing
adverse side effects. As part of the analysis, a random sample of 45 patients is admin-
istered doses of varying concentration (X), and the severity of side effects (Y) is
measured. The results include ¥ = 88.9, y = 165.3, SSy = 2,133.9, SSy;, = 4,502.53,
SSy = 12,500. Find the least-squares estimates of the regression parameters.

10-15. The following are data on annual inflation and stock returns. Run a regres-
sion analysis of the data and determine whether there is a linear relationship between
inflation and total return on stocks for the periods under study.

Inflation (%) Total Return on Stocks (%)

1 -3

2 36
12.6 12
-10.3 -8
0.51 53
2.03 -2
-1.8 18
5.79 32
5.87 24

10-16. An article in Worth discusses the immense success of one of the world’s most
prestigious cars, the Aston Martin Vanquish. This car is expected to keep its value as
it ages. Although this model is new, the article reports resale values of earlier Aston
Martin models over various decades.

Decade: 1960s 1970s 1980s 1990s 2000s
Present value

of Aston

Martin model

(average): $180,000  $40,000  $60,000  $160,000  $200,000

Based on these limited data, is there a relationship between age and average price of
an Aston Martin? What are the limitations of this analysis? Can you think of some
hidden variables that could affect what you are seeing in the data?

10-17. For the data given below, regress one variable on the other. Is there an impli-
cation of causality, or are both variables affected by a third?

Sample of Annual Transactions ($ millions)

Year Credit Card Online Debit Card
2002 156 211
2003 204 280
2004 279 386
2005 472 551
2006 822 684

2007 1,213 905

© The McGraw-Hill
Companies, 2009
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10-18. (A problem requiring knowledge of calculus) Derive the normal equations
(10-8) by taking the partial derivatives of SSE with respect to 4, and b, and setting
them to zero. [Hint: Set SSE = X¢? = 3(y —9)? = Z(y — §, — b,%)% and take the deriv-
atives of the last expression on the right.]

10-4 Error Variance and the Standard Errors
of Regression Estimators

Recall that o is the variance of the population regression errors € and that this vari-
ance is assumed to be constant for all values of Xin the range under study. The error
variance is an important parameter in the context of regression analysis because it is
a measure of the spread of the population elements about the regression line. Gen-
erally, the smaller the error variance, the more closely the population elements fol-
low the regression line. The error variance is the variance of the dependent variable
Yas “seen” by an eye looking in the direction of the regression line (the error vari-
ance is not the variance of Y). These properties are demonstrated in Figure 10-15.

The figure shows two regression lines. The top regression line in the figure has a
larger error variance than the bottom regression line. The error variance for each
regression is the variation in the data points as seen by the eye located at the base of
the line, looking in the direction of the regression line. The variance of Y, on the other
hand, is the variation in the Y values regardless of the regression line. That is, the
variance of Y for each of the two data sets in the figure is the variation in the data as
seen by an eye looking in a direction parallel to the X axis. Note also that the spread
of the data is constant along the regression lines. This is in accordance with our
assumption of equal error variance for all X.

Since ¢ is usually unknown, we need to estimate it from our data. An unbiased
estimator of 0%, denoted by S, is the mean square error (MSE) of the regression. As you
will soon see, sums of squares and mean squares in the context of regression analysis
are very similar to those of ANOVA, presented in the preceding chapter. The degrees
of freedom for error in the context of simple linear regression are n — 2 because we
have n data points, from which two parameters, 3, and ,, are estimated (thus, two
restrictions are imposed on the 7 points, leaving df = n — 2). The sum of squares for
error (SSE) in regression analysis is defined as the sum of squared deviations of the
data values Y from the fitted values Y. The sum of squares for error may also be
defined in terms of a computational formula using SSy, SS;, and SSy; as defined in
equations 10-9. We state these relationships in equations 10-13.

FIGURE 10-15 Two Examples of Regression Lines Showing the Error Variance

This eye sees the

variation in Y . .

(not the error A o Regression with

variance) . relatively large

error variance
—> K>

This eye sees the :. - ° ~——— Normal distribution

error variance ° o/ .’ of errors abput

(The eye here Sa e e regression line

is looking at A ‘N Variance of the

vertical deviations regression errors

of the points is equal along the line

from the line) e

This eye sees A

a smaller Regression with

error variance relatively small error variance =y
=
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df(error) = n— 2

SSE = S(Y — V)
(SSxy)*
=SSy — — X
Yssy
=SS, — b;SSyy (10-13)
An unbiased estimator of a2, denoted by $?, is
SSE
MSE = ———
n-—2

In Example 10-1, the sum of squares for error is

SSE = SSy — 5,SS4y = 66,855,898 — (1.255333776)(51,402,852.4)
= 2,328,161.2

and

SSE  2,328,161.2

MSE =" 923

= 101,224.4

An estimate of the standard deviation of the regression errors o is s, which is the square
root of MSE. (The estimator S'is not unbiased because the square root of an unbiased esti-
mator, such as §2, is not itself unbiased. The bias, however, is small, and the point is a tech-
nical one.) The estimate s = VVMSE of the standard deviation of the regression errors is
sometimes referred to as standard error of estimate. In Example 10-1 we have

s= VMSE = V101,224.4 = 318.1578225

The computation of SSE and MSE for Example 10-1 is demonstrated in Figure 10-16.
The standard deviation of the regression errors o and its estimate s play an impor-
tant role in the process of estimation of the values of the regression parameters 3, and 3,.

FIGURE 10-16 Computing SSE and MSE in the American Express Study

are squared and summed
to give us SSE
0 T T T T T T >
0 1,000 2,000 3,000 4,000 5,000 6,000
Miles
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This is so because o is part of the expressions for the standard errors of both parame-
ter estimators. The standard errors are defined next; they give us an idea of the accu-
racy of the least-squares estimates 4, and b,. The standard error of b, is especially
important because it is used in a test for the existence of a linear relationship between X and Y.
This will be seen in Section 10-6.

The standard error of b, is

sV 3 x?

T Vs,

(10-14)

where s = VMSE.

The standard error of 4, is very important, for the reason just mentioned. The true
standard deviation of 4, is 0/ VSS,, but since ¢ is not known, we use the estimated
standard deviation of the errors, s.

The standard error of b, is
s

0 s,
X

(10-15)

Formulas such as equation 10-15 are nice to know, but you should not worry too
much about having to use them. Regression analysis is usually done by computer,
and the computer output will include the standard errors of the regression estimates.
We will now show how the regression parameter estimates and their standard errors
can be used in the construction of confidence intervals for the true regression param-
eters B, and B,. In Section 10-6, as mentioned, we will use the standard error of 4, for
conducting the very important hypothesis test about the existence of a linear rela-
tionship between Xand Y.

Confidence Intervals for the Regression Parameters

Confidence intervals for the true regression parameters 3, and {8, are easy to compute.

A (1T — o) 100% confidence interval for B, is
by % ta2, n-25(bo) (10-16)

where s(b,) is as given in equation 10-14.

A (1 — a) 100% confidence interval for B, is
by %t )2, n-25(by) (10-17)

where s(b,) is as given in equation 10-15.

Let us construct 95% confidence intervals for B, and B, in the American Express
example. Using equations 10-14 to 10-17, we get

993,426,946
s(b) = == = 318.16 e ~ 170.338 (10-18a)
\V/nSSy V/(25)(40,947,557.84)

l\ﬁ
XN

where the various quantities were computed earlier, including 2x2, which is found at
the bottom of Table 10-2.
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A 95% confidence interval for B is

By = Lo, noS(b) = 274.85 = 2.069(170.338) = [~77.58, 627.28]  (10-18b)

where the value 2.069 is obtained from Appendix C, Table 3, for 1 — o = 0.95 and
23 degrees of freedom. We may be 95% confident that the true regression intercept is
anywhere from —77.58 to 627.28. Again using equations 10-14 to 10-17, we get

$ 318.16

\V/SSy  \/40,047,557.84

s(b) = = 0.04972 (10-19a)

A 95% confidence interval for B, is

by = o os(by) = 125533 = 2.069(0.04972)
= [1.15246, 1.35820] (10-19b)

From the confidence interval given in equation 10-19b, we may be 95% confident
that the frue slope of the (population) regression line is anywhere from 1.15246 to
1.3582. This range of values is far from zero, and so we may be quite confident that
the true regression slope is not zero. This conclusion is very important, as we will see
in the following sections. Figure 10-17 demonstrates the meaning of the confidence
interval given in equation 10-19b.

In the next chapter, we will discuss joint confidence intervals for both regression
parameters {3, and §3,, an advanced topic of secondary importance. (Since the two esti-
mates are related, a joint interval will give us greater accuracy and a more meaningful,
single confidence coefficient 1 — a. This topic is somewhat similar to the Tukey analy-
sis of Chapter 9.) Again, we want to deemphasize the importance of inference about 3,
even though information about the standard error of the estimator of this parameter
is reported in computer regression output. It is the inference about 3, that is of interest
to us. Inference about B, has implications for the existence of a linear relationship
between Xand Y; inference about 3, has no such implications. In addition, you may be
tempted to use the results of the inference about B, to “force” this parameter to equal

FIGURE 10-17 Interpretation of the Slope Estimation for Example 10-1

Upper 95% bound on Least-squares point estimate
the regression slope = 1.35820 of regression slope = 1.25533

Lower 95% bound on the
regression slope = 1.15246

Height = Slope

0 (not a possible value of the
———— " regression slope, at 95%)

Length =1
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zero or another number. Such temptation should be resisted for reasons that will be
explained in a later section; therefore, we deemphasize inference about (3,

EXAMPLE 10-2

The data below are international sales versus U.S. sales for the McDonald’s chain for
10 years.

Sales for McDonald'’s at Year End (in billions)

U.S. Sales International Sales
7.6 2.3
7.9 2.6
8.3 2.9
8.6 3.2
8.8 3.7
9.0 4.1
9.4 4.8

10.2 5.7
11.4 7.0
12.1 8.9

Use the template to regress McDonald’s international sales, then answer the following
questions:

1. What is the regression equation?
2. What is the 95% confidence interval for the slope?
3. What is the standard error of estimate?

Solution
Al B | ¢ | o |d d [ + [ 4 | « | t | m | ~ | o P | a |

1_|Simple Regression [ No. of McDonald’s |
v
| 3 | Quality Mkt Share rz Coefficient of Determination
| 4 | X Y Error Confidence Interval for Slope r Coefficient of Correlation
5 1| 76 23 [024289 |[ 1-a | (1 — a) C.. for B, |
[6 | 2[ 79 26 | 01158 || 95% | 142364 +or- 01452 | s(b,)[ 0.06297 | Standard Error of Slope
| 7| 3] 83 29 | -0.15365 t| 22.6098
| 8 | 4 8.6 3.2 -0.28075 | Confidence Interval for Intercept p-value | 0.0000

9 5 88 37 [-006547|[ 1-a | (1 — a) C.I. for B, |
(10| 6 o 41| 00498 | [ 95% | -8.76252 +or- 1.36998 | s(b,) [ 0.59409 | Standard Error of Intercept
[ 11| 7] 94 4.8 | 0.18035
| 12 | 8 10.2 5.7 -0.05856 | Prediction Interval for Y

13 9| 114 7 046693 | [ 1=« [ Xx [ (1 —a)C.l.for ¥given X |
E 10[ 124 8.9 | 043653 | | or- Standard Error of prediction
(6 | Prediction Interval for E[Y | X]
(77 | == X (1 —a) Clfor E[VIX] |
18 | +0r - |
BEN
[ 20 | ANOVA Table
| 21 | Source SS df MS F | Foriticar | p-value|
[ 22 | Regn. | 40.0099 1 40.0099 | 511.201 | 5.31766 | 0.0000 |
[ 23 | Error | 0.62613 8 0.07827

24 Total | 40.636 9
25 ]
| 26 | Scatter Plot, Regression Line and Regression Equation
| 27 y = 1.423x - 8.762 )
| 28 | 10
| 29 | b4
Ea é
| 31 | 6
| 32 | &
| 33 | &
| 34 | 2
| 35 |

36 0+ : - - - - - .
37| 0 2 4 6 8 10 12 14
E N X J
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1. From the template, the regression equation is Y = 1.4326X — 8.7625.
2. The 95% confidence interval for the slope is 1.4236 * 0.1452.
3. The standard error of estimate is 0.2798.

© The McGraw-Hill
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PROBLEMS

10-19. Give a 99% confidence interval for the slope parameter in Example 10-1. Is
zero a credible value for the true regression slope?

10-20. Give an unbiased estimate for the error variance in the situation of problem
10-11. In this problem and others, you may either use a computer or do the compu-
tations by hand.

10-21. Find the standard errors of the regression parameter estimates for problem
10-11.

10-22. Give 95% confidence intervals for the regression slope and the regression
intercept parameters for the situation of problem 10-11.

10-23. For the situation of problem 10-13, find the standard errors of the estimates
of the regression parameters; give an estimate of the variance of the regression errors.
Also give a 95% confidence interval for the true regression slope. Is zero a plausible
value for the true regression slope at the 95% level of confidence?

10-24. Repeat problem 10-23 for the situation in problem 10-17. Comment on
your results.

10-25. In addition to its role in the formulas of the standard errors of the regression
estimates, what is the significance of s2?

10-5 Correlation

We now digress from regression analysis to discuss an important related con-
cept: statistical correlation. Recall that one of the assumptions of the regression
model is that the independent variable X is fixed rather than random and that
the only randomness in the values of Y comes from the error term e. Let us
now relax this assumption and assume that both X and Y are random variables.
In this new context, the study of the relationship between two variables is
called correlation analysis.

In correlation analysis, we adopt a symmetric approach: We make no distinction
between an independent variable and a dependent one. The correlation between two
variables is a measure of the linear relationship between them. The correlation gives
an indication of how well the two variables move together in a straight-line fashion.
The correlation between Xand Yis the same as the correlation between Yand X. We
now define correlation more formally.

The correlation between two random variables X and Yis a measure of the
degree of linear association between the two variables.

Two variables are highly correlated if they move well together. Correlation is indi-
cated by the correlation coefficient.

The population correlation coefficient is denoted by p. The coefficient p
can take on any value from —1, through O, to 1.
The possible values of p and their interpretations are given below.

1. When p is equal to zero, there is no correlation. That is, there is no linear
relationship between the two random variables.

%

CHAPTER 14
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2. When p = 1, there is a perfect, positive, linear relationship between the two
variables. That is, whenever one of the variables, X or Y, increases, the other
variable also increases; and whenever one of the variables decreases, the other
one must also decrease.

3. When p = —1, there is a perfect negative linear relationship between Xand Y.
When Xor Y increases, the other variable decreases; and when one decreases,
the other one must increase.

4. When the value of p is between 0 and 1 in absolute value, it reflects the relative
strength of the linear relationship between the two variables. For example, a
correlation of 0.90 implies a relatively strong positive relationship between the
two variables. A correlation of —0.70 implies a weaker, negative (as indicated
by the minus sign), linear relationship. A correlation p = 0.30 implies a
relatively weak (positive) linear relationship between X and Y.

A few sets of data on two variables, and their corresponding population correlation
coefficients, are shown in Figure 10-18.

How do we arrive at the concept of correlation? Consider the pair of random
variables X and Y. In correlation analysis, we will assume that both X and Y are normally
distributed random variables with means .y and ., and standard deviations oy and oy,
respectively. We define the covariance of X and Y as follows:

The covariance of two random variables X and Y'is
Cov(X, V) = E[(X — po(Y — py)l (10-20)

where p, is the (population) mean of X and p., is the (population) mean of Y.

The covariance of X and Y is thus the expected value of the product of the deviation of
X from its mean and the deviation of Y from its mean. The covariance is positive when
the two random variables move together in the same direction, it is negative when the
two random variables move in opposite directions, and it is zero when the two vari-
ables are not linearly related. Other than this, the covariance does not convey much. Its
magnitude cannot be interpreted as an indication of the degree of linear association
between the two variables, because the covariance’s magnitude depends on the magni-
tudes of the standard deviations of X and ¥ But if we divide the covariance by these
standard deviations, we get a measure that is constrained to the range of values —1 to 1
and conveys information about the relative strength of the linear relationship between
the two variables. This measure is the population correlation coefficient p.

The population correlation coefficient is
_ Cov(X,Y)

Ox0y

(10-21)

Figure 10-18 gives an idea of what data from populations with different values of p
may look like.

Like all population parameters, the value of p is not known to us, and we need to
estimate it from our random sample of (X Y) observation pairs. It turns out that a
sample estimator of Cov(X, Y) is SSxy/(n — 1); an estimator of oy is V' SSx/(n — 1);
and an estimator of oy is \/SSy/(n — 1). Substituting these estimators for their pop-
ulation counterparts in equation 10-21, and noting that the term 7 — 1 cancels, we
get the sample correlation coefficient, denoted by r. This estimate of p, also referred to
as the Pearson product-moment correlation coefficient, is given in equation 10-22.
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FIGURE 10-18 Several Possible Correlations between Two Variables
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The sample correlation coefficient is
SS
r= XY (10-22)

In regression analysis, the square of the sample correlation coefficient, or 72, has

a special meaning and importance. This will be seen in Section 10-7.
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We often use the sample correlation coefficient for descriptive purposes as a point
estimator of the population correlation coefficient p. When r is large and positive
(closer to +1), we say that the two variables are highly correlated in a positive way;
when 7 is large and negative (toward —1), we say that the two variables are highly
correlated in an inverse direction, and so on. That is, we view r as if it were the
parameter p, which r estimates. However, r can be used as an estimator in testing
hypotheses about the true correlation coefficient p. When such hypotheses are tested,
the assumption of normal distributions of the two variables is required.

The most common test is a test of whether two random variables X and Y are
correlated. The hypothesis test is

Ho:p =0 (10-23)
Hi:p#0
The test statistic for this particular test is
! (10-24)

D - 2)

This test statistic may also be used for carrying out a one-tailed test for the exis-
tence of a positive only, or a negative only, correlation between Xand ¥ These would
be one-tailed tests instead of the two-tailed test of equation 10-23, and the only dif-
ference is that the critical points for £ would be the appropriate one-tailed values for a
given a. The test statistic, however, is good only for tests where the null hypothesis
assumes a zero correlation. When the true correlation between the two variables is
anything but zero, the ¢ distribution in equation 10-24 does not apply; in such cases
the distribution is more complicated.’ The test in equation 10-23 is the most com-
mon hypothesis test about the population correlation coefficient because it is a test
for the existence of a linear relationship between two variables. We demonstrate this
test with the following example.

EXAMPLE 10-3

Solution

A study was carried out to determine whether there is a linear relationship between
the time spent in negotiating a sale and the resulting profits. A random sample of 27
market transactions was collected, and the time taken to conclude the sale as well as the
resulting profit were recorded for each transaction. The sample correlation coefficient
was computed: 7 = 0.424. Is there a linear relationship between the length of negoti-
ations and transaction profits?

We want to conduct the hypothesis test Hy: p = 0 versus H;: p # 0. Using the test
statistic in equation 10-24, we get

r B 0.424

e = VI -9/n-9 V{-04a282 2ot

°In cases where we want to test H(,: p = aversus H: p #* a, where ais some number other than zero, we may do so
by using the Fisher transformation: z' = (1/2) log [(1 + 7)/(1 — 1)], where z' is aj rox1mately normally distributed with
mean p’ = (1/2) log [(1 + p)/(1 — p)] and standard dev1auon o' = 1/Vn — 3. (Here log is taken to mean natural
logarithm.) Such tests are less common, and a more complete description may be found in advanced texts. As an exercise,
the interested reader may try this test on some data. [You need to transform z' to an approximate standard normal
z = (z' — n')/0’; use the null-hypothesis value of p in the formula for p.".]
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From Appendix C, Table 3, we find that the critical points for a ¢ distribution with
25 degrees of freedom and o = 0.05 are =2.060. Therefore, we reject the null
hypothesis of no correlation in favor of the alternative that the two variables are lin-
early related. Since the critical points for o = 0.01 are +2.787, and 2.787 > 2.34, we
are unable to reject the null hypothesis of no correlation between the two variables if
we want to use the 0.01 level of significance. If we wanted to test (before looking at
our data) only for the existence of a positive correlation between the two variables,
our test would have been H: p = 0 versus H;: p > 0 and we would have used only
the right tail of the ¢ distribution. At o = 0.05, the critical point of ¢with 25 degrees of
freedom is 1.708, and at o = 0.01 it is 2.485. The null hypothesis would, again, be
rejected at the 0.05 level but not at the 0.01 level of significance.
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In regression analysis, the test for the existence of a linear relationship between
Xand Yis a test of whether the regression slope B, is equal to zero. The regression
slope parameter is related to the correlation coefficient (as an exercise, compare the
equations of the estimates rand &,); when two random variables are uncorrelated, the
population regression slope is zero.

We end this section with a word of caution. First, the existence of a correlation
between two variables does not necessarily mean that one of the variables causes the
other one. The determination of causality is a difficult question that cannot be direct-
ly answered in the context of correlation analysis or regression analysis. Also, the
statistical determination that two variables are correlated may not always mean that
they are correlated in any direct, meaningful way. For example, if we study any two
population-related variables and find that both variables increase “together,” this
may merely be a reflection of the general increase in population rather than any
direct correlation between the two variables. We should look for outside variables
that may affect both variables under study.

PROBLEMS

10-26. What is the main difference between correlation analysis and regression
analysis?

10-27. Compute the sample correlation coefficient for the data of problem 10-11.
10-28. Compute the sample correlation coefficient for the data of problem 10-13.
10-29. Using the data in problem 10-16, conduct the hypothesis test for the exis-
tence of a linear correlation between the two variables. Use o = 0.01.

10-30. Isit possible that a sample correlation of 0.51 between two variables will not
indicate that the two variables are really correlated, while a sample correlation of
0.04 between another pair of variables will be statistically significant? Explain.
10-31. The following data are indexed prices of gold and copper over a 10-year
period. Assume that the indexed values constitute a random sample from the popu-
lation of possible values. Test for the existence of a linear correlation between the
indexed prices of the two metals.

Gold: 76, 62, 70, 59, 52, 53, 53, 56, 57, 56
Copper: 80, 68, 73, 63, 65, 68, 65, 63, 65, 66

Also, state one limitation of the data set.

10-32. Follow daily stock price quotations in the Wall Street Journal for a pair of
stocks of your choice, and compute the sample correlation coefficient. Also, test for
the existence of a nonzero linear correlation in the “population” of prices of the two
stocks. For your sample, use as many daily prices as you can.
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10-33. Again using the Wall Street Journal as a source of data, determine whether
there is a linear correlation between morning and afternoon price quotations in
London for an ounce of gold (for the same day). Any ideas?

10-34. A study was conducted to determine whether a correlation exists between
consumers’ perceptions of a television commercial (measured on a special scale) and
their interest in purchasing the product (measured on a scale). The results are n = 65 and
r = 0.37. Is there statistical evidence of a linear correlation between the two variables?
10-35. (Optional, advanced problem) Using the Fisher transformation (described
in footnote 5), carry out a two-tailed test of the hypothesis that the population corre-
lation coefficient for the situation of problem 10-34 is p = 0.22. Use a = 0.05.

10-6 Hypothesis Tests about the
Regression Relationship

When Xand Y have no linear relationship, the population regression slope B, is equal to
zero. Why? The population regression slope is equal to zero in either of two situations:

1. When Y is constant for all values of X. For example, Y= 457.33 for all X. This is
shown in Figure 10-19(a). If Y is constant for all values of X, the slope of ¥ with
respect to X, parameter 3, is identically zero; there is no linear relationship
between the two variables.

FIGURE 10-19 Two Possibilities Where the Population Regression Slope Is Zero

(a)
Y =457.33 for all X. Yis constant for all X
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2. When the two variables are uncorrelated. When the correlation between X and
Yis zero, as Xincreases ¥ may increase, or it may decrease, or it may remain
constant. There is no systematic increase or decrease in the values of Yas X
increases. This case is shown in Figure 10-19(4). As can be seen in the figure,
data from this process are not “moving” in any pattern; thus, the line has no
direction to follow. With no direction, the slope of the line is, again, zero.

Also, remember that the relationship may be curved, with no linear correlation, as
was seen in the last part of Figure 10-18. In such cases, the slope may also be zero.

In all cases other than these, at least some linear relationship exists between the
two variables X and Y the slope of the line in all such cases would be either positive
or negative, but not zero. Therefore, the most important statistical test in simple linear
regression is the test of whether the slope parameter B, is equal to zero. If we conclude in any
particular case that the true regression slope is equal to zero, this means that there
is no linear relationship between the two variables: Either the dependent variable
is constant, or—more commonly—the two variables are not linearly related. We thus
have the following test for determining the existence of a linear relationship between
two variables X and Y-

A hypothesis test for the existence of a linear relationship between X and Y'is

Ho: By =
Hy: By # 0 (10-25)

This test is, of course, a two-tailed test. Either the true regression slope is equal to
zero, or it is not. If it is equal to zero, the two variables have no linear relationship; if
the slope is not equal to zero, then it is either positive or negative (the two tails of
rejection), in which case there is a linear relationship between the two variables. The
test statistic for determining the rejection or nonrejection of the null hypothesis is
given in equation 10-26. Given the assumption of normality of the regression errors,
the test statistic possesses the ¢ distribution with n — 2 degrees of freedom.

The test statistic for the existence of a linear relationship between X and Yis

b
= 10-2
tin-2) s(by) (10-26)
where b, is the least-squares estimate of the regression slope and s(b,) is
the standard error of b,. When the null hypothesis is true, the statistic has
a t distribution with n — 2 degrees of freedom.

This test statistic is a special version of a general test statistic

(10-27)

where (B,), is the value of B, under the null hypothesis. This statistic follows the for-
mat (Estimate — Hypothesized parameter value)/(Standard error of estimator). Since,
in the test of equation 10-25, the hypothesized value of B, is zero, we have the sim-
plified version of the test statistic, equation 10-26. One advantage of the simple form
of our test statistic is that it allows us to conduct the test very quickly. Computer out-
put for regression analysis usually contains a table similar to Table 10-3.
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TABLE 10-3 An Example of a Part of the Computer Output for Regression

Variable Estimate Standard Error t Ratio
Constant 5.22 0.5 10.44
X 4.88 0.1 48.80

The estimate associated with X (or whatever name the user may have given to the
independent variable in the computer program) is ;. The standard error associated
with Xis 5(&,). To conduct the test, all you need to do is to divide 4, by s(3,). In the
example of Table 10-3, 4.88/0.1 = 48.8. The answer is reported in the table as the
¢ ratio. The ¢ ratio can now be compared with critical points of the ¢ distribution with
n — 2 degrees of freedom. Suppose that the sample size used was 100. Then the critical
points for a = 0.05, from the spreadsheet, are +1.98, and since 48.8 > 1.98, we con-
clude that there is evidence of a linear relationship between X and Y in this hypotheti-
cal example. (Actually, the p-value is very small. Some computer programs will also
report the p-value in an extra column on the right.) What about the first row in the
table? The test suggested here is a test of whether the intercept 3, (this is the constant)
is equal to zero. The test statistic is the same as equation 10-26, but with subscripts 0
instead of 1. As we mentioned earlier, this test, although suggested by the output of
computer routines, is usually not meaningful and should generally be avoided.

We now conduct the hypothesis test for the existence of a linear relationship
between miles traveled and amount charged on the American Express card in Example
10-1. Our hypotheses are Hj: B; = 0 and H;: B, # 0. Recall that for the American
Express study, 4, = 1.25533 and s(,) = 0.04972 (from equations 10-11 and 10-19a).
We now compute the test statistic, using equation 10-26:

b _ 125533

= =220 _ 9595
{b)  0.04972

From the magnitude of the computed value of the statistic, we know that there is sta-
tistical evidence of a linear relationship between the variables, because 25.25 is
certainly greater than any critical point of a ¢ distribution with 23 degrees of freedom.
We show the test in Figure 10-20. The critical points of ¢ with 23 degrees of freedom
and o = 0.01 are obtained from Appendix C, Table 3. We conclude that there is evi-
dence of a linear relationship between the two variables “miles traveled” and “dollars
charged” in Example 10-1.

FIGURE 10-20 Test for a Linear Relationship for Example 10-1

t3) distribution Test statistic value = 25.25,
far in the rejection region \

Rejection region
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Other Tests

Although the test of whether the slope parameter is equal to zero is a very important
test, because it is a test for the existence of a linear relationship between the two vari-
ables, other tests are possible in the context of regression. These tests serve second-
ary purposes. In financial analysis, for example, it is often important to determine
from past performance data of a particular stock whether the stock generally moves
with the market as a whole. If the stock does move with the stock market as a whole,
the slope parameter of the regression of the stock’s returns (¥) versus returns on the
market as a whole (X) would be equal to 1.00. That is, B; = 1. We demonstrate this
test with Example 10-4.
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The Market Sensitivity Report, issued by Merrill Lynch, Inc., lists estimated beta coeffi-
cients of common stocks as well as their standard errors. Beta is the term used in the
finance literature for the estimate 5, of the regression of returns on a stock versus
returns on the stock market as a whole. Returns on the stock market as a whole are
taken by Merrill Lynch as returns on the Standard & Poor’s 500 index. The report lists
the following findings for common stock of Time, Inc.: beta = 1.24, standard error of
beta = 0.21, n = 60. Is there statistical evidence to reject the claim that the Time stock
moves, in general, with the market as a whole?

We want to carry out the special-purpose test Hy: B, = 1 versus H;: B; # 1. We use
the general test statistic of equation 10-27:

by — (B1)o  1.24 — 1
Lpog) = = — 114
(n=2) s(6)) 0.21

Since n — 2 = 58, we use the standard normal distribution. The test statistic value is
in the nonrejection region for any usual level «, and we conclude that there is no sta-
tistical evidence against the claim that Time moves with the market as a whole.

EXAMPLE 10-4

Solution

PROBLEMS

10-36. An interesting marketing research effort has recently been reported, which
incorporates within the variables that predict consumer satisfaction from a product not
only attributes of the product itself but also characteristics of the consumer who buys the
product. In particular, a regression model was developed, and found successful, regress-
ing consumer satisfaction §'on a consumer’s materialism A/ measured on a psychologi-
cally devised scale. For satisfaction with the purchase of sunglasses, the estimate of beta,
the slope of Swith respect to M, was b = —2.20. The reported ¢ statistic was —2.53. The
sample size was n = 54.7 Is this regression statistically significant? Explain the findings.

10-37. A regression analysis was carried out of returns on stocks (Y") versus the ratio
of book to market value (X'). The resulting prediction equation is

Y= 121 + 3.1X(2.89)

where the number in parentheses is the standard error of the slope estimate. The
sample size used is n = 18. Is there evidence of a linear relationship between returns
and book to market value?

This subsection may be skipped without loss of continuity.

7Jeff Wang and Melanie Wallendorf, “Materialism, Status Signaling, and Product Satisfaction,” Journal of the Academy of
Marketing Science 34, no. 4 (2006), pp. 494-505.
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10-38. In the situation of problem 10-11, test for the existence of a linear relationship
between the two variables.

10-39. In the situation of problem 10-13, test for the existence of a linear relationship
between the two variables.

10-40. In the situation of problem 10-16, test for the existence of a linear relationship
between the two variables.

10-41. For Example 10-4, test for the existence of a linear relationship between
returns on the stock and returns on the market as a whole.

10-42. A regression analysis was carried out to determine whether wages increase
for blue-collar workers depending on the extent to which firms that employ them
engage in product exportation. The sample consisted of 585,692 German blue-collar
workers. For each of these workers, the income was known as well as the percentage
of the work that was related to exportation. The regression slope estimate was 0.009,
and the #statistic value was 1.51.% Carefully interpret and explain these findings.

10-43. An article in Financial Analysts Journal discusses results of a regression
analysis of average price per share Pon the independent variable X/k where X/k is
the contemporaneous earnings per share divided by firm-specific discount rate. The
regression was run using a random sample of 213 firms listed in the Value Line
Investment Survey. The reported results are

P=16.67 + 0.68X/k(12.03)

where the number in parentheses is the standard error. Is there a linear relationship
between the two variables?

10-44. A management recruiter wants to estimate a linear regression relationship
between an executive’s experience and the salary the executive may expect to earn
after placement with an employer. From data on 28 executives, which are assumed
to be a random sample from the population of executives that the recruiter places,
the following regression results are obtained: 4, = 5.49 and s(§;) = 1.21. Is there a
linear relationship between the experience and the salary of executives placed by the
recruiter?

10-7 How Good Is the Regression?

Once we have determined that a linear relationship exists between the two variables,
the question is: How strong is the relationship? If the relationship is a strong one, pre-
diction of the dependent variable can be relatively accurate, and other conclusions
drawn from the analysis may be given a high degree of confidence.

We have already seen one measure of the regression fit: the mean square error.
The MSE is an estimate of the variance of the true regression errors and is a measure
of the variation of the data about the regression line. The MSE, however, depends on
the nature of the data, and what may be a large error variation in one situation may
not be considered large in another. What we need, therefore, is a relative measure of
the degree of variation of the data about the regression line. Such a measure allows us
to compare the fits of different models.

The relative measure we are looking for is a measure that compares the variation
of Y about the regression line with the variation of Y without a regression line. This
should remind you of analysis of variance, and we will soon see the relation of
ANOVA to regression analysis. It turns out that the relative measure of regression fit

8Thorsten Schank, Claus Schnabel, and Joachim Wagner, “Do Exporters Really Pay Higher Wages? First Evidence
from German Linked Employer-Employee Data,” Journal of International Economics 72 (May 2007), pp. 52-74.
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FIGURE 10-21 The Three Deviations Associated with a Data Point
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we are looking for is the square of the estimated correlation coefficient 7. It is called
the coefficient of determination.

The coefficient of determination r? is a descriptive measure of the
strength of the regression relationship, a measure of how well the regres-
sion line fits the data.

The coefficient of determination 72 is an estimator of the corresponding population
parameter p?, which is the square of the population coefficient of correlation between
two variables Xand Y. Usually, however, we use r? as a descriptive statistic—a relative
measure of how well the regression line fits the data. Ordinarily, we do not use r? for
inference about p2.

We will now see how the coefficient of determination is obtained directly from a
decomposition of the variation in Yinto a component due to error and a component
due to the regression. Figure 10-21 shows the least-squares line that was fit to a data
set. One of the data points (, y) is highlighted. For this data point, the figure shows
three kinds of deviations: the deviation of y from its mean y — ¥, the deviation of y
from its predicted value using the regression y — §, and the deviation of the regression-
predicted value of y from the mean of y, which is y — j. Note that the least-squares
line passes through the point (%, 7).

We will now follow exactly the same mathematical derivation we used in Chapter 9
when we derived the ANOVA relationships. There we looked at the deviation of a
data point from its respective group mean—the error; here the error is the deviation of
a data point from its regression-predicted value. In ANOVA, we also looked at the total
deviation, the deviation of a data point from the grand mean; here we have the deviation
of the data point from the mean of Y. Finally, in ANOVA we also considered the treat-
ment deviation, the deviation of the group mean from the grand mean; here we have
the regression deviation—the deviation of the predicted value from the mean of Y.

The error is also called the unexplained deviation because it is a deviation that cannot
be explained by the regression relationship; the regression deviation is also called the
explained deviation because it is that part of the deviation of a data point from the mean
that can be explained by the regression relationship between Xand Y. We explain why the
Yvalue of a particular data point is above the mean of Y by the fact that its X component
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happens to be above the mean of Xand by the fact that Xand Y are linearly (and posi-
tively) related. As can be seen from Figure 10-21, and by simple arithmetic, we have

y-v = y-y y-v
Total _  Unexplained Explained

deviation  deviation (error) = deviation (regression) (10-28)

As in the analysis of variance, we square all three deviations for each one of our data
points, and we sum over all z points. Here, again, cross-terms drop out, and we are
left with the following important relationship for the sums of squares:’

;(y,‘ -y ;(y/' )¢+ _21()7; -y

SST = SSE + SSR
(Total sum (Sum of (Sum of
of squares) = squares for error) + squares for regression) (10-29)

The term SSR is also called the explained variation; it is the part of the variation in Y that
is explained by the relationship of Y with the explanatory variable X. Similarly, SSE is
the unexplained variation, due to error; the sum of the two is the fotal variationin Y.

We define the coefficient of determination as the sum of squares due to the regression
divided by the total sum of squares. Since by equation 10-29 SSE and SSR add to SST,
the coefficient of determination is equal to 1 minus SSE/SST. We have

, SSR__ SSE

Tsst ! st (10-20)

The coefficient of determination can be interpreted as the proportion of the variation in
Y that is explained by the regression relationship of 'Y with X.

Recall that the correlation coefficient 7 can be between —1 and 1. Its square, 72, can
therefore be anywhere from 0 to 1. This is in accordance with the interpretation of 72 as
the percentage of the variation in Y explained by the regression. The coefficient is a measure
of how closely the regression line fits the data; it is a measure of how much the variation
in the values of Y'is reduced once we regress Y on variable X. When 72 = 1, we know
that 100% of the variation in Yis explained by X. This means that the data all lie right
on the regression line, and no errors result (because, from equation 10-30, SSE must be
equal to zero). Since r? cannot be negative, we do not know whether the line slopes
upward or downward (the direction can be found from 5, or 7), but we know that
the line gives a perfect fit to the data. Such cases do not occur in business or economics.
In fact, when there are no errors, no natural variation, there is no need for statistics.

At the other extreme is the case where the regression line explains nothing. Here
the errors account for everything, and SSR is zero. In this case, we see from equation
10-30 that 72 = 0. In such cases, X and Y have no linear relationship, and the true
regression slope is probably zero (we say probably because 72 is only an estimator, given
to chance variation; it could possibly be estimating a nonzero p?. Between the two
cases 72 = 0 and r? = 1 are values of 72 that give an indication of the relative fit of the
regression model to the data. The higher v? is, the better the fit and the higher our confidence

9The proof of the relation is left as an exercise for the mathematically interested reader.
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in the regression. Be wary, however, of situations where the reported 72 is exceptionally
high, such as 0.99 or 0.999. In such cases, something may be wrong. We will see an
example of this in the next chapter. Incidentally, in the context of multiple regression,
discussed in the next chapter, we will use the notation R? for the coefficient of determi-
nation to indicate that the relationship is based on several explanatory X variables.

How high should the coefficient of determination be before we can conclude that
a regression model fits the data well enough to use the regression with confidence?
This question has no clear-cut answer. The answer depends on the intended use of
the regression model. If we intend to use the regression for prediction, the higher the
72, the more accurate will be our predictions.

An r? value of 0.9 or more is very good, a value greater than 0.8 is good, and a
value of 0.6 or more may be satisfactory in some applications, although we must be
aware of the fact that, in such cases, errors in prediction may be relatively high.
When the 72 value is 0.5 or less, the regression explains only 50% or less of the vari-
ation in the data; therefore, predictions may be poor. If we are interested only in
understanding the relationship between the variables, lower values of 72 may be
acceptable, as long as we realize that the model does not explain much.

Figure 10-22 shows several regressions and their corresponding r? values. If you
think of the total sum of squared deviations as being in a box, then r? is the propor-
tion of the box that is filled with the explained sum of squares, the remaining part
being the squared errors. This is shown for each regression in the figure.

Computing r? is easy if we express SSR, SSE, and SST in terms of the computa-
tional sums of squares and cross-products (equations 10-9):

SST=SS,  SSR=4SS,, SSE=SS,— 5SSy,  (10-31)

We will now use equation 10-31 in computing the coefficient of determination for
Example 10-1. For this example, we have

SST = SS, = 66,855,898
SSR = 5SS,y = (1.255333776)(51,402,852.4) = 64,527,736.8

and

SSE = SST — SSR = 2,328,161.2

(These were computed when we found the MSE for this example.) We now compute
r? as

9SSR 64,527,736.8

= SST ~ 66855808 00018

T

The r? in this example is very high. The interpretation is that over 96.5% of the vari-
ation in charges on the American Express card can be explained by the relationship
between charges on the card and extent of travel (miles). Again we note that while
the computational formulas are easy to use, r* is always reported in a prominent
place in regression computer output.
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FIGURE 10-22 Value of the Coefficient of Determination in Different Regressions
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In the next section, we will see how the sums of squares, along with the corre-
sponding degrees of freedom, lead to mean squares—and to an analysis of variance
in the context of regression. In closing this section, we note that in Chapter 11, we
will introduce an adjusted coefficient of determination that accounts for degrees of
freedom.

PROBLEMS

10-45. In problem 10-36, the coefficient of determination was found to be 7% =
0.09.1° What can you say about this regression, as far as its power to predict cus-
tomer satisfaction with sunglasses using information on a customer’s materialism
score?

17eff Wang and Melanie Wallendorf, “Materialism, Status Signaling, and Product Satisfaction,” Journal of the Academy
of Marketing 34, no. 4 (2006), pp. 494-505.
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LEARNING OBJECTIVES

After studying this chapter, you should be able to:

e Determine whether multiple regression would be applicable to
a given instance.

e Formulate a multiple regression model.

e Carry out a multiple regression using the spreadsheet template.
* Test the validity of a multiple regression by analyzing residuals.
e Carry out hypothesis tests about the regression coefficients.

e Compute a prediction interval for the dependent variable.

¢ Use indicator variables in a multiple regression.

e Carry out a polynomial regression.

e Conduct a Durbin-Watson test for autocorrelation in residuals.
e Conduct a partial F test.

e Determine which independent variables are to be included
in a multiple regression model.

¢ Solve multiple regression problems using the Solver macro.
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11-1 Using Statistics

linear regression, explained in Chapter 10, this
turns out to be true—as long as some rules are fol-
lowed. Thus, if one X variable can help predict the value of Y] then several X variables
may do an even better job—as long as they contain more information about Y.

A survey of the research literature in all areas of business reveals an overwhelm-
ingly wide use of an extension of the method of Chapter 10, a model called multiple
regression, which uses several independent variables in predicting a variable of
interest.

' People often think that if something is good, then
more of it is even better. In the case of the simple
= =

11-2 The k-Variable Multiple Regression Model

The population regression model of a dependent variable Y on a set of k
independent variables X;, X,, . . ., X, is given by
V=B + B Xy + B X+ + BX t e 11-1)

where B, is the Y intercept of the regression surface and each B, i=1,..., k,
is the slope of the regression surface—sometimes called the response
surface—with respect to variable X;.

As with the simple linear regression model, we have some assumptions.

Model assumptions:

1. For each observation, the error term e is normally distributed with
mean zero and standard deviation o and is independent of the error
terms associated with all other observations. That is,

€, ~ N(0, 0%) forallj=1,2,...,n 11-2)

independent of other errors.!

2. In the context of regression analysis, the variables X; are considered
fixed quantities, although in the context of correlational analysis, they
are random variables. In any case, X; are independent of the error
term e. When we assume that X; are fixed quantities, we are assum-
ing that we have realizations of k variables X; and that the only ran-
domness in Y comes from the error term e.

For a case with £ = 2 variables, the response surface is a plane in three dimen-
sions (the dimensions are Y, X, and X,). The plane is the surface of average response
E(Y) for any combination of the two variables X; and X,. The response surface is
given by the equation for E(Y), which is the expected value of equation 11-1 with
two independent variables. Taking the expected value of Y gives the value 0 to the

!The multiple regression model is valid under less restrictive assumptions than these. The assumptions of normality of
the errors allows us to perform ¢ tests and F'tests of model validity. Also, all we need is that the errors be uncorrelated with
one another. However, normal distribution + noncorrelation = independence.
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FIGURE 11-1

A Two-Dimensional Response
Surface E(Y) = B, + B, X; +
B,X, and Some Points

Companies, 2009
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error term €. The equations for Yand E(Y) in the case of regression with two inde-
pendent variables are

Y=0,+BX + By X, te (11-3)
EY) =By + BiX + By X, (11-4)

These are equations analogous to the case of simple linear regression. Here, instead
of a regression line, we have a regression plane. Some values of Y (i.e., combinations of
the X; variables times their coefficients B,, and the errors €) are shown in Figure 11-1.
The figure shows the response surface, the plane corresponding to equation 11-4.

We estimate the regression parameters of equation 11-3 by the method of least
squares. This is an extension of the procedure used in simple linear regression. In the
case of two independent variables where the population model is equation 11-3, we
need to estimate an equation of a plane that will minimize the sum of the squared
errors (Y — Y)? over the entire data set of # points. The method is extendable to any
k independent variables. In the case of £ = 2, there are three equations, and their
solutions are the least-squares estimates 8, b, and &,. These are estimates of the Yinter-
cept, the slope of the plane with respect to X, and the slope of the plane with respect
to X,. The normal equations for £ = 2 follow.

When the various sums 2y, Xx,, and the other sums and products are entered into
these equations, it is possible to solve the three equations for the three unknowns &,
b, and b,. These computations are always done by computer. We will, however,
demonstrate the solution of equations 11-5 with a simple example.

The normal equations for the case of two independent variables:
2y =nby + by 2x; + b, 2x,
2XY = by X, + by X3+ b, Zx;x,
DXy = by 2x, + by 2xyx, + by 2 x3 (11-5)

EXAMPLE 11-1

Solution

Alka-Seltzer recently embarked on an in-store promotional campaign, with displays
of its antacid featured prominently in supermarkets. The company also ran its usual
radio and television commercials. Over a period of 10 weeks, the company kept track
of its expenditure on radio and television advertising, variable X;, as well as its spend-
ing on in-store displays, variable X,. The resulting sales for each week in the area
studied were recorded as the dependent variable Y. The company analyst conducting
the study hypothesized a linear regression model of the form

Y=8,+BX +BX, +€

linking sales volume with the two independent variables, advertising and in-store pro-
motions. The analyst wanted to use the available data, considered a random sample
of 10 weekly observations, to estimate the parameters of the regression relationship.

Table 11-1 gives the data for this study in terms of Y, X], and X, all in thousands of
dollars. The table also gives additional columns of products and squares of data
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TABLE 11-1  Various Quantities Needed for the Solution of the Normal Equations for
Example 11-1 (numbers are in thousands of dollars)

Y X, X, X, X, e 2 XY X,Y
72 12 5 60 144 25 864 360
76 11 8 88 121 64 836 608
78 15 6 90 225 36 1,170 468
70 10 5 50 100 25 700 350
68 11 3 33 121 9 748 204
80 16 9 144 256 81 1,280 720
82 14 12 168 196 144 1,148 984
65 8 4 32 64 16 520 260
62 8 3 24 64 9 496 186
90 18 10 180 324 100 1,620 900
743 123 65 869 1,615 509 9,382 5,040

values needed for the solution of the normal equations. These columns are X, X,, X7,
X3, XY, and X,Y. The sums of these columns are then substituted into equations 11-5,
which are solved for the estimates 4, 4,, and 5, of the regression parameters.

From Table 11-1, the sums needed for the solution of the normal equations are
Sy = 743, Sx, = 123, Sx, = 65, Sxy = 9,382, Sx,y = 5,040, Sxx, = 869, Sxf =
1,615, and Sx3 = 509. When these sums are substituted into equations 11-5, we
get the resulting normal equations:

743 = 106, + 1235, + 654,
9,382 = 1234, + 1,615, + 8695,
5,040 = 658, + 8695, + 5095,

Solution of this system of equations by substitution, or by any other method of solu-
tion, gives

by = 47164942 b, = 1.5990404 b, = 1.1487479

These are the least-squares estimates of the true regression parameters 3, B, and {,.
Recall that the normal equations (equations 11-5) are originally obtained by calculus
methods. (They are the results of differentiating the sum of squared errors with
respect to the regression coefficients and setting the results to zero.)

Figure 11-2 shows the results page of the template on which the same problem
has been solved. The template is described later.

© The McGraw-Hill
Companies, 2009

471

The meaning of the estimates 8, 4, and b, as the Y intercept, the slope with
respect to X, and the slope with respect to X,, respectively, of the estimated regres-
sion surface is illustrated in Figure 11-3.

The general multiple regression model, equation 11-1, has one Y intercept param-
eter and £ slope parameters. Each slope parameter B,, i = 1, .. ., £, represents the
amount of increase (or decrease, in case it is negative) in £(Y) for an increase of 1 unit
in variable X; when all other variables are kept constant. The regression coefficients 8,
are therefore sometimes referred to as net regression coefficients because they represent
the net change in E(Y) for a change of 1 unit in the variable they represent, all else
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FIGURE 11-2  The Results from the Template
[Multiple Regression.xls; Sheet: Results]

A [ 8 [ ¢ | o [ e [ F [ & [ H [ 1+ [ o | Kk | L ¥
| 1 |Multiple Regression Results | Example 11-1 )
2
[ 3 | 0 1 2 3 4 5 6 7 8 9 10
| 4 | Intercept X1 X2
[ 5 | b | 47.1649 | 1.59904 | 1.1487
[ 6 |  s(b)[ 247041 | 028096 | 0.3052
[ 7 | t [ 19.0919 | 569128 | 3.7633
| 8 | p-value[ 0.0000 | 0.0007 | 0.0070
9
[0 | VIF[ 22071 | 22071 | I I I I
11
| 12 |ANOVA Table
[ 13 | Source SS df MS F | Feitca | p-value |
14 | Regn.| 630538 2 31527 | 86.335 | 4.7374 | 0.0000 | s[1.9109 ]
| 15 | Error| 25.5619 7 3.6517
| 16 | Total[ 656.1 9 R2[ 0.9610 Adjusted R?[0.9499 ]
17
X

FIGURE 11-3  The Least-Squares Regression Surface for Example 11-1

e

//
b,=1.149 |

by=47.165 I 1 !

| b,=1.599

> X,

remaining constant.? This is often difficult to achieve in multiple regression analysis
since the explanatory variables are often interrelated in some way.

The Estimated Regression Relationship

The estimated regression relationship is
\/S Y =by+ b X, + bX, + -+ b X, (11-6)

where Y is the predicted value of Y, the value lying on the estimated regres-
CHAPTER 17 sion surface. The terms b;, i = 0, . . ., k, are the least-squares estimates of
the population regression parameters ;.

The least-squares estimators giving us the ;are BLUEs (best linear unbiased estimators).

2For the reader with knowledge of calculus, we note that the coefficient B, is the partial derivative of £(Y) with respect
to X;: B, = 0E(Y)/0X,
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The estimated regression relationship can also be written in a way that shows
how each value of Yis expressed as a linear combination of the values of X; plus an
error term. This is given in equation 11-7.

Y= bo + bixyj + byxy + -+ bx e j=1,...,n 11-7)

In Example 11-1 the estimated regression relationship of sales volume Y on adver-
tising X, and in-store promotions X, is given by

Y= 47164942 + 1.5990404X, + 1.1487479X,

© The McGraw-Hill
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PROBLEMS

11-1. What are the assumptions underlying the multiple regression model? What is
the purpose of the assumption of normality of the errors?

11-2. In a regression analysis of sales volume Y versus the explanatory variables
advertising expenditure X; and promotional expenditures X,, the estimated coeffi-
cient 4, is equal to 1.34. Explain the meaning of this estimate in terms of the impact of
promotional expenditure on sales volume.

11-3. In terms of model assumptions, what is the difference between a multiple
regression model with £ independent variables and a correlation analysis involving
these variables?

11-4. What is a response surface? For a regression model with seven independent
variables, what is the dimensionality of the response surface?

11-5. Again, for a multiple regression model with £ = 7 independent variables,
how many normal equations are there leading to the values of the estimates of the
regression parameters?

11-6. What are the BLUESs of the regression parameters?

11-7. For a multiple regression model with two independent variables, results of
the analysis include 2y = 852, 3x, = 155, 3x, = 88, Jxy = 11,423, Zxy = 8,320,
Sxx, = 1,055, Sx? = 2,125, and 343 = 768, n = 100. Solve the normal equations for
this regression model, and give the estimates of the parameters.

11-8. A realtor is interested in assessing the impact of size (in square feet) and dis-
tance from the center of town (in miles) on the value of homes (in thousands of
dollars) in a certain area. Nine randomly chosen houses are selected; data are as follows.

Y (value): 345, 238, 452, 422, 328, 375, 660, 466, 290
X, (size): 1,650, 1,870, 2,230, 1,740, 1,900, 2,000, 3,200, 1,860, 1,230
X, (distance): 3.5,0.5, 1.5,4.5, 1.8, 0.1, 3.4, 3.0, 1.0

Compute the estimated regression coefficients, and explain their meaning.

11-9. The estimated regression coefficients in Example 11-1 are §, = 47.165,
b, = 1599, and b, = 1.149 (rounded to three decimal places). Explain the meaning
of each of the three numbers in terms of the situation presented in the example.

11-3 The F Test of a Multiple Regression Model

The first statistical test we need to conduct in our evaluation of a multiple regression
model is a test that will answer the basic question: Is there a linear regression rela-
tionship between the dependent variable Y and any of the explanatory, independent
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variables X; suggested by the regression equation under consideration? If the pro-
posed regression relationship is given in equation 11-1, a statistical test that can
answer this important question is as follows.

A statistical hypothesis test for the existence of a linear relationship between
Y and any of the X;is

HO: 812[32:[33:"':6/(:0
H,: NotalltheB,(i=1, ..., k) are zero (11-8)

If the null hypothesis is true, no linear relationship exists between Y and any of the
independent variables in the proposed regression equation. In such a case, there is
nothing more to do. There is no regression. If, on the other hand, we reject the null
hypothesis, there is statistical evidence to conclude that a regression relationship
exists between Y and at least one of the independent variables proposed in the
regression model.

To carry out the important test in equation 11-8, we will perform an analysis of
variance. The ANOVA is the same as the one given in Chapter 10 for simple linear
regression, except that here we have £ independent variables instead of just 1.
Therefore, the Ftest of the analysis of variance is not equivalent to the ¢ test for the
significance of the slope parameter, as was the case in Chapter 10. Since in multiple
regression there are £ slope parameters, we have £ different ¢ tests to follow
the ANOVA.

Figure 11-4 is an extension of Figure 10-21 to the case of £ = 2 independent
variables—to a regression plane instead of a regression line. The figure shows a
particular data point y, the predicted point y which lies on the estimated regression
surface, and the mean of the dependent variable j. The figure shows the three devia-
tions associated with the data point: the error deviation y — §, the regression devia-
tion y — ¥, and the total deviation y — y. As seen from the figure, the three deviations
satisfy the relation: Total deviation = Regression deviation + Error deviation. As in
the case of simple linear regression, when we square the deviations and sum them over
all n data points, we get the following relation for the sums of squares. The sums of

FIGURE 11-4 Decomposition of the Total Deviation in Multiple Regression Analysis

A
Y=Y Error deviation

A -
Y=Y Regression deviation
deviation

<l

> X,
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squares are denoted by SST for the total sum of squares, SSR for the regression sum
of squares, and SSE for the error sum of squares.

SST = SSR + SSE (11-9)

This is the same as equation 10-29. The difference lies in the degrees of freedom. In
simple linear regression, the degrees of freedom for error were n — 2 because two
parameters, an intercept and a slope, were estimated from a data set of z points. In
multiple regression, we estimate £ slope parameters and an intercept from a data set
of n points. Therefore, the degrees of freedom for error are n — (k + 1). The degrees
of freedom for the regression are £, and the total degrees of freedom are n — 1. Again,
the degrees of freedom are additive. Table 11-2 is the ANOVA table for a multiple
regression model with £ independent variables.

For Example 11-1, we present the ANOVA table computed by using the tem-
plate. The results are shown in Table 11-3. Since the p-value is small, we reject the
null hypothesis that both slope parameters B, and B, are zero (equation 11-8), in
favor of the alternative that the slope parameters are not both zero. We conclude that
there is evidence of a linear regression relationship between sales and at least one of
the two variables, advertising or in-store promotions (or both). The Ftest is shown in
Figure 11-5.

Note that since Example 11-1 has two independent variables, we do not yet
know whether there is a regression relationship between sales and both advertising
and in-store promotions, or whether the relationship exists between sales and one of
the two variables only—and if so, which one. All we know is that our data present sta-
tistical evidence to conclude that a relationship exists between sales and at least one
of the two independent variables. This is, of course, true for all cases with two or
more independent variables. The F test only tells us that there is evidence of a
relationship between the dependent variable and at least one of the independent
variables in the full regression equation under consideration. Once we conclude that
a relationship exists, we need to conduct separate tests to determine which of the
slope parameters 3, where i = 1, . . ., £, are different from zero. Therefore, £ further
tests are needed.

TABLE 11-2  ANOVA Table for Multiple Regression

Source of Variation Sum of Squares Degrees of Freedom Mean Square F Ratio
’ _ SSR ~ MSR
Regression SSR k MSR = p = MSE
_ SSE
Error SSE n—(k+1) MSEfin “k+ 1
Total SST n—1

TABLE 11-3  ANOVA Table Produced by the Template
[Multiple Regression.xls; Sheet: Results]

|11 [ANOVA Table

12 Source SS df Ms F [ Feritical p-value‘

13 Regn. | 630.538 2 315.27 | 86.335 | 4.7374 | 0.0000 | s [ 1.9109
14 Error | 25.5619 7 3.6517

15 Total | 656.1 9 R®| 0.9610 Adjusted R?| 0.9499
16
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FIGURE 11-5 Regression F Test for Example 11-1
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Compare the use of ANOVA tables in multiple regression with the analysis of
variance discussed in Chapter 9. Once we rejected the null hypothesis that all » pop-
ulation means are equal, we required further analysis (the Tukey procedure or an
alternative technique) to determine where the differences existed. In multiple regres-
sion, the further tests necessary for determining which variables are important are
¢ tests. These tests tell us which variables help explain the variation in the values of
the dependent variable and which variables have no explanatory power and should
be eliminated from the regression model. Before we get to the separate tests of mul-
tiple regression parameters, we want to be able to evaluate how good the regression
relationship is as a whole.

PROBLEMS

11-10. Explain what is tested by the hypothesis test in equation 11-8. What con-
clusion should be reached if the null hypothesis is not rejected? What conclusion
should be reached if the null hypothesis is rejected?

11-11. In a multiple regression model with 12 independent variables, what are the
degrees of freedom for error? Explain.

11-12. A study was reported about the effects of the number of hours worked, on
average, and the average hourly income on unemployment in different countries.?
Suppose that the regression analysis resulted in SSE = 8,650, SSR = 988, and the
sample size was 82 observations. Is there a regression relationship between the
unemployment rate and at least one of the explanatory variables?

11-13. Awis is interested in estimating weekly costs of maintenance of its rental cars
of a certain size based on these variables: number of miles driven during the week,
number of renters during the week, the car’s total mileage, and the car’s age. A
regression analysis is carried out, and the results include n = 45 cars (each car selected
randomly, during a randomly selected week of operation), SSR = 7,768, and SST =
15,673. Construct a complete ANOVA table for this problem, and test for the exis-
tence of a linear regression relationship between weekly maintenance costs and any
of the four independent variables considered.

SChristopher A. Pissarides, “Unemployment and Hours of Work,” International Economic Review, February 2007,
pp. 1-36.
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11-14. Nissan Motor Company wanted to find leverage factors for marketing the
Maxima model in the United States. The company hired a market research firm in
New York City to carry out an analysis of the factors that make people favor the model
in question. As part of the analysis, the market research firm selected a random sam-
ple of 17 people and asked them to fill out a questionnaire about the importance of
three automobile characteristics: prestige, comfort, and economy. Each respondent
reported the importance he or she gave to each of the three attributes on a 0-100
scale. Each respondent then spent some time becoming acquainted with the car’s fea-
tures and drove it on a test run. Finally, each of the respondents gave an overall appeal
score for the model on a 0-100 scale. The appeal score was considered the dependent
variable, and the three attribute scores were considered independent variables. A mul-
tiple regression analysis was carried out, and the results included the following
ANOVA table. Complete the table. Based on the results, is there a regression relation-
ship between the appeal score and at least one of the attribute variables? Explain.

Analysis of Variance

SOURCE DF SS MS
Regression 7474.0
Error
Total 8146.5

11-4 How Good Is the Regression?

The mean square error MSE is an unbiased estimator of the variance of the population
errors €, which we denote by o The mean square error is defined in equation 11-10.

The mean square error is
n
>y - v)?
SSE j=1

n—(G+1 n—(k+1

MSE = (11-10)

The errors resulting from the fit of a regression surface to our set of 7 data points
are shown in Figure 11-6. The smaller the errors, the better the fit of the regression

FIGURE 11-6 Errors in a Multiple Regression Model (shown for k = 2)

=i \
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model. Since the mean square error is the average squared error, where averaging is
done by dividing by the degrees of freedom, MSE is a measure of how well the
regression fits the data. The square root of MSE is an estimator of the standard
deviation of the population regression errors o. (Note that a square root of an unbi-
ased estimator is not unbiased; therefore, VMSE is not an unbiased estimator of o,
but is still a good estimator.) The square root of MSE is usually denoted by s and is
referred to as the standard error of estimate.

The standard error of estimate is
s = VMSE 11-11)

This statistic is usually reported in computer output of multiple regression analysis.
The mean square error and its square root are measures of the size of the errors in
regression and give no indication about the explained component of the regression fit
(see Figure 11-4, showing the breakdown of the total deviation of any data point to
the error and regression components). A measure of regression fit that does incorpo-
rate the explained as well as the unexplained components is the multiple coefficient of
determination, denoted by R% This measure is an extension to multiple regression of
the coefficient of determination in simple linear regression, denoted by 2.

The multiple coefficient of determination R? measures the proportion of
the variation in the dependent variable that is explained by the combination
of the independent variables in the multiple regression model:

_SSR_ . SSE

R2=220 - 22=
SST SST

(11-12)

Note that R? is also equal to SSR/SST because SST = SSR + SSE. We prefer the def-
inition in equation 11-12 for consistency with another measure of how well the
regression model fits our data, the adjusted multiple coefficient of determination,
which will be introduced shortly.

The measures SSE, SSR, and SST are reported in the ANOVA table for multiple
regression. Because of the importance of R?, however, it is reported separately in
computer output of multiple regression analysis. The square root of the multiple coef-
ficient of determination, R = VR, is the multiple correlation coefficient. In the
context of multiple regression analysis (rather than correlation analysis), the multiple
coefficient of determination R? is the important measure, not R. The coefficient of
determination measures the percentage of variation in Y explained by the X vari-
ables; thus, it is an important measure of how well the regression model fits the data.
In correlation analysis, where the X, variables as well as Yare assumed to be random
variables, the multiple correlation coefficient R measures the strength of the linear
relationship between Yand the £ variables X,

Figure 11-7 shows the breakdown of the total sum of squares (the sum of squared
deviations of all # data points from the mean of Y; see Figure 11-6) into the sum of
squares due to the regression (the explained variation) and the sum of squares due to
error (the unexplained variation). The interpretation of R? is the same as that of 7? in
simple linear regression. The difference is that here the regression errors are measured
as deviations from a regression surface that has higher dimensionality than a regres-
sion line. The multiple coefficient of determination R? is a very useful measure of per-
formance of a multiple regression model. It does, however, have some limitations.



Aczel-Sounderpandian: 11. Multiple Regression Text © The McGraw-Hill ‘ @
Complete Business Companies, 2009
Statistics, Seventh Edition

Multiple Regression 479

FIGURE 11-7 Decomposition of the Sum of Squares in Multiple Regression,
and the Definition of R?

SSR SSE
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Recall the story at the beginning of this chapter about the student who wanted to
predict the nation’s economic future with a multiple regression model that had
many variables. It turns out that, for any given data set of z points, as the number of
variables in the regression model increases, so does R%. You have already seen how
this happens: The greater the number of variables in the regression equation, the
more the regression surface “chases” the data until it overfits them. Since the fit of
the regression model increases as we increase the number of variables, R? cannot
decrease and approaches 1.00, or 100% explained variation in Y. This can be very
deceptive, as the model-while appearing to fit the data very well-would produce
poor predictions.

Therefore, a new measure of fit of a multiple regression model must be introduced:
the adjusted (or corrected) multiple coefficient of determination. The adjusted multiple
coefficient of determination, denoted R?, is the multiple coefficient of determina-
tion corrected for degrees of freedom. It accounts, therefore, not only for SSE and
SST, but also for their appropriate degrees of freedom. This measure does not always
increase as new variables are entered into our regression equation. When R? does
increase as a new variable is entered into the regression equation, including the vari-
able in the equation may be worthwhile. The adjusted measure is defined as follows:

The adjusted multiple coefficient of determination is

2 SSE/[n — (k + 1)]
a SST/(n — 1)

(11-13)

The adjusted R? is the R? (defined in equation 11-12) where both SSE and SST are
divided by their respective degrees of freedom. Since SSE/[n — (£ + 1)] is the MSE,
we can say that, in a sense, R is a mixture of the two measures of the performance
of a regression model: MSE and R%. The denominator on the right-hand side of
equation 11-13 would be mean square total, were we to define such a measure.

Computer output for multiple regression analysis usually includes the adjusted
R2. If it is not reported, we can get R? from R? by a simple formula:

n—1

22 _ 1 1 _ p2
F=1-0 R)n—(k-i-l)

(11-14)
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The proof of the relation between R? and R? has instructional value and is left as an
exercise. Note: Unless the number of variables is relatively large compared to the
number of data points (as in the economics student’s problem), R? and R? are close to
each other in value. Thus, in many situations, consideration of only the uncorrected
measures R? is sufficient. We evaluate the fit of a multiple regression model based on
this measure. When we are considering whether to include an independent variable
in a regression model that already contains other independent variables, the increase
in R? when the new variable is added must be weighed against the loss of 1 degree of
freedom for error resulting from the addition of the variable (a new parameter would
be added to the equation). With a relatively small data set and several independent
variables in the model, adding a new variable if R? increases, say, from 0.85 to 0.86,
may not be worthwhile. As mentioned earlier, in such cases, the adjusted measure R?
may be a good indicator of whether to include the new variable. We may decide to
include the variable if R? increases when the variable is added.

Of several possible multiple regression models with different independent vari-
ables, the model that minimizes MSE will also maximize RZ. This should not surprise
you, since MSE is related to the adjusted measure R2. The use of the two criteria
MSE and R? in selecting variables to be included in a regression model will be dis-
cussed in a later section.

We now return to the analysis of Example 11-1. Note that in Table 11-3 R? =
0.961, which means that 96.1% of the variation in sales volume is explained by the
combination of the two independent variables, advertising and in-store promotions.
Note also that the adjusted R? is 0.95, which is very close to the unadjusted measure.
We conclude that the regression model fits the data very well since a high percentage
of the variation in Yis explained by X|, and/or X, (we do not yet know which of the
two variables, if not both, is important). The standard error of estimate s is an esti-
mate of o, the standard deviation of the population regression errors. Note that R? is
also a statistic, like s or MSE. It is a sample estimate of the population multiple
coefficient of determination p?, a measure of the proportion of the explained varia-
tion in Yin the entire population of Yand X; values.

All three measures of the performance of a regression model-MSE (and its square
root ), the coefficient of determination R?, and the adjusted measure R2—are obtain-
able from quantities reported in the ANOVA table. This is shown in Figure 11-8,
which demonstrates the relations among the different measures.

FIGURE 11-8 Measures of Performance of a Regression Model and the ANOVA Table
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PROBLEMS

11-15. Under what conditions is it important to consider the adjusted multiple
coefficient of determination?

11-16. Explain why the multiple coefficient of determination never decreases as
variables are added to the multiple regression model.

11-17.  Would it be useful to consider an adjusted coefficient of determination in a
simple linear regression situation? Explain.

11-18. Prove equation 11-14.

11-19. Can you judge how well a regression model fits the data by considering the
mean square error only? Explain.

11-20. A regression analysis was carried out of the stock return on the first day of
an IPO (initial public offering) based on four variables: assessed benefit of the IPO,
assessed improved market perception, assessed perception of market strength at
the time of the IPO, and assessed growth potential due to patent or copyright
ownership. The adjusted R? was 2.1%, and the Fvalue was 2.27. The sample consisted
of 438 responses from the chief financial officers of firms who issued IPOs from
January 1, 1996, through June 15, 2002.* Analyze these results.

11-21. A portion of the regression output for the Nissan Motor Company study of
problem 11-14 follows. Interpret the findings, and show how these results are obtain-
able from the ANOVA table results presented in problem 11-14. How good is the
regression relationship between the overall appeal score for the automobile and the
attribute-importance scores? Also, obtain the adjusted R? from the multiple coeffi-
cient of determination.

s = 7.192 R? = 91.7% R? (ADJ) = 89.8%

11-22. A study of the market for mortgage-backed securities included a regression
analysis of security effects and time effects on market prices as dependent variable.
The sample size was 383 and the R? was 94%.° How good is this regression? Would
you confidently predict market price based on security and time effects? Explain.

11-23. In the Nissan Motor Company situation in problem 11-21, suppose that a
new variable is considered for inclusion in the equation and a new regression rela-
tionship is analyzed with the new variable included. Suppose that the resulting multi-
ple coefficient of determination is R? = 91.8%. Find the adjusted multiple coefficient
of determination. Should the new variable be included in the final regression equa-
tion? Give your reasons for including or excluding the variable.

11-24. An article on pricing and competition in marketing reports the results of a
regression analysis.% Information price was the dependent variable, and the inde-
pendent variables were six marketing measures. The R? was 76.9%. Interpret the
strength of this regression relationship. The number of data points was 242, and the
Ftest value was 44.8. Conduct the test and state your conclusions.

11-25. The following excerpt reports the results of a regression of excess stock
returns on firm size and stock price, both variables being ranked on some scale.
Explain, critique, and evaluate the reported results.

“James C. Brau, Patricia A. Ryan, and Irv DeGraw, “Initial Public Offerings: CFO Perceptions,” Financial Review 41
(2006), pp. 483-511.

°Xavier Garbaix, Arvind Krishnamurthy, and Olivier Vigneron, “Limits of Arbitrage: Theory and Evidence from the
Mortgage-Backed Securities Market,” Journal of Finance 42, no. 2 (2007), pp. 557-595.

SMarkus Christen and Miklos Sarvary, “Competitive Pricing of Information: A Longitudinal Experiment,” Journal of
Marketing Research 44 (February 2007), pp. 42-56.
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Estimated Coefficient Value (t Statistic)
INTCPT X1 X2 ADJUSTED-R?

Ordinary Least-Squares Regression Results
0.484 —0.030 -0.017 0.093
(G712 (=2.91)*** (—1.66)*
*Denotes significance at the 10% level.
**Denotes significance at the 5% level.
***Denotes significance at the 1% level.

11-26. A study of Dutch tourism behavior included a regression analysis using a
sample of 713 respondents. The dependent variable, number of miles traveled on
vacation, was regressed on the independent variables, family size and family income;
and the multiple coefficient of determination was R? = 0.72. Find the adjusted multi-
ple coefficient of determination R?. Is this a good regression model? Explain.

11-27. A regression analysis was carried out to assess sale prices of land in Uganda
based on many variables that describe the owner of the land: age, educational level,
number of males in the household, and more.” Suppose that there are eight inde-
pendent variables, 500 data points, SSE = 6,179, and SST = 23,108. Construct an
ANOVA table, conduct the F test, find R? and R?, and find the MSE.

11-5 Tests of the Significance of Individual
Regression Parameters

Until now, we have discussed the multiple regression model in general. We saw how
to test for the existence of a regression relationship between Y and at least one of a
set of independent X;variables by using an F'test. We also saw how to evaluate the fit
of the general regression model by using the multiple coefficient of determination
and the adjusted multiple coefficient of determination. We have not yet seen, however,
how to evaluate the significance of individual regression parameters 3, A test for the
significance of an individual parameter is important because it tells us whether the vari-
able in question, X, has explanatory power with respect to the dependent variable.
Such a test tells us whether the variable in question should be included in the regres-
sion equation.

In the last section, we saw that some indication about the benefit from inclusion
of a particular variable in the regression equation is gained by comparing the adjusted
coefficient of determination of a regression that includes the variable of interest with
the value of this measure when the variable is not included. In this section, we will
perform individual ¢ tests for the significance of each slope parameter B,. As we will
see, however, we must use caution in interpreting the results of the individual ¢ tests.

In Chapter 10 we saw that the hypothesis test

Hy:B, =0
H:B,#0

can be carried out using either a ¢ statistic ¢ = 4,/s(,) or an Fstatistic. Both tests were
shown to be equivalent because F with 1 degree of freedom for the numerator is a
squared {random variable with the same number of degrees of freedom as the denom-
inator of F. A simple linear regression has only one slope, 8, and if that slope is zero,
there is no linear regression relationship. In multiple regression, where £ > 1, the two

’J.M. Baland et al., “The Distributive Impact of Land Markets in Uganda,” Economic Development and Cultural Change
55, no. 2 (2007), pp. 283-311.
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tests are not equivalent. The Ftest tells us whether a relationship exists between Yand
at least one of the X, and the £ ensuing ¢ tests tell us which of the X; variables are
important and should be included in the regression equation. From the similarity of
this situation with the situation of analysis of variance discussed in Chapter 9, you
probably have guessed at least one of the potential problems: The individual ¢tests are
each carried out at a single level of significance «, and we cannot determine the level
of significance of the family of all £ tests of the regression slopes jointly. The problem
is further complicated by the fact that the tests are not independent of each other
because the regression estimates come from the same data set.

Recall that hypothesis tests and confidence intervals are related. We may test
hypotheses about regression slope parameters (in particular, the hypothesis that a
slope parameter is equal to zero), or we may construct confidence intervals for the
values of the slope parameters. If a 95% confidence interval for a slope parameter 8,
contains the point zero, then the hypothesis test H: 3, = 0 carried out using a = 0.05
would lead to nonrejection of the null hypothesis and thus to the conclusion that
there is no evidence that the variable X} has a linear relationship with Y.

We will demonstrate the interdependence of the separate tests of significance of
the slope parameters with the use of confidence intervals for these parameters.
When £ = 2, there are two regression slope parameters: 3, and 3,. (As in simple lin-
ear regression, usually there is no interest in testing hypotheses about the intercept
parameter.) The sample estimators of the two regression parameters are 4, and b,.
These estimators (and their standard errors) are correlated with each other (and
assumed to be normally distributed). Therefore, the joint confidence region for the
pair of parameters (3,, B,) is an ellipse. If we consider the estimators 4, and 4, sepa-
rately, the joint confidence region will be a rectangle, with each side a separate con-
fidence interval for a single parameter. This is demonstrated in Figure 11-9. A point
inside the rectangle formed by the two separate confidence intervals for the param-
eters, such as point 4 in the figure, seems like a plausible value for the pair of regres-
sion slopes (B,, B,) but is not jointly plausible for the parameters. Only points inside
the ellipse in the figure are jointly plausible for the pair of parameters.

Another problem that may arise in making inferences about individual regres-
sion slope coefficients is due to multicollinearity—the problem of correlations
among the independent variables themselves. In multiple regression, we hope to
have a strong correlation between each independent variable and the dependent

FIGURE 11-9 Joint Confidence Region and Individual Confidence Intervals
for the Slope Parameters B, and §3,
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variable Y. Such correlations give the independent X; variables predictive power
with respect to Y. However, we do not want the independent variables to be corre-
lated with one another. When the independent variables are correlated with one
another, we have multicollinearity. When this happens, the independent variables
rob one another of explanatory power. Many problems may then arise. One prob-
lem is that the standard errors of the individual slope estimators become unusually
high, making the slope coefficients seem statistically not significant (not different
from zero). For example, if we run a regression of job performance Y versus the vari-
ables age X, and experience X,, we may encounter multicollinearity. Since, in gen-
eral, as age increases so does experience, the two independent variables are not
independent of each other; the two variables rob each other of explanatory power
with respect to Y. If we run this regression, it is likely that—even though experience
affects job performance—the individual test for significance of the slope parameter
B, would lead to nonrejection of the null hypothesis that this slope parameter is
equal to zero. Much will be said later about the problem of multicollinearity.
Remember that in the presence of multicollinearity, the significance of any regres-
sion parameter depends on the other variables included in the regression equation.
Multicollinearity may also cause the signs of some estimated regression parameters
to be the opposite of what we expect.

Another problem that may affect the individual tests of significance of model
parameters occurs when one of the model assumptions is violated. Recall from Sec-
tion 11-2 that one of the assumptions of the regression model is that the error terms
€; are uncorrelated with one another. When this condition does not hold, as may
happen when our data are time series observations (observations ordered by time:
yearly data, monthly data, etc.), we encounter the problem of autocorrelation of the
errors. This causes the standard errors of the slope estimators to be unusually small,
making some parameters seem more significant than they really are. This problem,
too, should be considered, and we will discuss it in detail later.

Forewarned of problems that may arise, we now consider the tests of the individual
regression parameters. In a regression model of Y versus £ independent variables X,
X, ..., X, we have £k tests of significance of the slope parameters B, By, . . ., By

Hypothesis tests about individual regression slope parameters:
(1) Hgp, =0
Hy: By # 0
(2 Hyp,=0
H: B, #0
(k) HypB,=0
Hi: B # 0 (11-15)

These tests are carried out by comparing each test statistic with a critical point of the dis-
tribution of the test statistic. The distribution of each test statistic, when the appropriate
null hypothesis is true, is the ¢ distribution with n — (£ + 1) degrees of freedom. The dis-
tribution depends on our assumption that the regression errors are normally distributed.
The test statistic for each hypothesis test (z) in equations 11-15 (where 1 = 1,2, ..., £) is
the slope estimate b,, divided by the standard error of the estimator s(4;). The estimates
and the standard errors are reported in the computer output. Each s(4,) is an estimate of
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the population standard deviation of the estimator o(4,), which is unknown to us.® The
test statistics for the hypothesis tests (1) through (£) in equations 11-15 are as follows:

Test statistics for tests about individual regression slope parameters:
Fortesti(i=1,...,k):
b;—0

tn-kr1yy = s(by) (11-16)

We write each test statistic as the estimate minus zero (the null-hypothesis value of )
to stress the fact that we may test the null hypothesis that B, is equal to any number,
not necessarily zero. Testing for equality to zero is most important because it tells us
whether there is evidence that variable X; has a linear relationship with Y. It tells us
whether there is statistical evidence that variable X; has explanatory power with
respect to the dependent variable.

Let us look at a quick example. Suppose that a multiple regression analysis is
carried out relating the dependent variable Y to five independent variables X, X,,
X,, X,, and X;. In addition, suppose that the F test resulted in rejection of the null
hypothesis that none of the predictor variables has any explanatory power with
respect to Y; suppose also that R? of the regression is respectably high. As a result,
we believe that the regression equation gives a good fit to the data and potentially
may be used for prediction purposes. Our task now is to test the importance of each
of the X; variables separately. Suppose that the sample size used in this regression
analysis is 7 = 150. The results of the regression estimation procedure are given in
Table 11-4.

From the information in Table 11-4, which variables are important, and which
are not? Note that the first variable listed is “Constant.” This is the Yintercept. As we
noted earlier, testing whether the intercept is zero is less important than testing
whether the coefficient parameter of any of the £ variables is zero. Still, we may do so
by dividing the reported coefficient estimate, 53.12, by its standard error, 5.43. The
result is the value of the test statistic that has a ¢ distribution with n — (£ + 1) = 150 —
6 = 144 degrees of freedom when the null hypothesis that the intercept is zero is true.
For manual calculation purposes, we shall approximate this ¢ random variable as a
standard normal variable Z. The test statistic value is z = 53.12/5.43 = 9.78. This
value is greater than 1.96, and we may reject the null hypothesis that 3, is equal to
zero at the a = 0.05 level of significance. Actually, the p-value is very small. The
regression hyperplane, therefore, most probably does not pass through the origin.

TABLE 11-4 Regression Results for Individual Parameters

Variable Coefficient Estimate Standard Error
Constant 53.12 5.43
X; 2.03 0.22
X, 5.60 1.30
X; 10.35 6.88
X4 3.45 2.70
X —4.25 0.38

8Each 5(b,) is the product of s = 1 MSE and a term denoted by ¢, which is a diagonal element in a matrix obtained in
the regression computations. You need not worry about matrices. However, the matrix approach to multiple regression is
discussed in a section at the end of this chapter for the benefit of students familiar with matrix theory.
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Let us now turn to the tests of significance of the slope parameters of the variables
in the regression equation. We start with the test for the significance of variable X; as
a predictor variable. The hypothesis test is Hy: B; = 0 versus H;: B, # 0. We now
compute our test statistic (again, we will use Z for #,,,):

b — 0 _ 203
s(by) 2

= 9.227

S
N

The value of the test statistic, 9.227, lies far in the right-hand rejection region of Z for
any conventional level of significance; the p-value is very small. We therefore con-
clude that there is statistical evidence that the slope of Y with respect to Xj, the popu-
lation parameter B,, is not zero. Variable X; is shown to have some explanatory
power with respect to the dependent variable.

If it is not zero, what is the value of 8,? The parameter, as in the case of all popu-
lation parameters, is not known to us. An unbiased estimate of the parameter’s value
is b, = 2.03. We can also compute a confidence interval for B,. A 95% confidence
interval for B, is §; + 1.965(5;) = 2.03 * 1.96(0.22) = [1.599, 2.461]. Based on our data
and the validity of our assumptions, we can be 95% confident that the true slope of ¥’
with respect to X] is anywhere from 1.599 to 2.461. Figure 11-10 shows the hypothesis
test for the significance of variable X;.

For the other variables X, through X;, we show the hypothesis tests without figures.
The tests are carried out in the same way, with the same distribution. We also do not
show the computation of confidence intervals for the slope parameters. These are done
exactly as shown for B,. Note that when the hypothesis test for the significance of a
slope parameter leads to nonrejection of the null hypothesis that the slope parameter
is zero, the point zero will be included in a confidence interval with the same confi-
dence level as the level of significance of the test.

The hypothesis test for 8, is Hy: B, = 0 versus Hy: B, # 0. The test statistic value
is z = 5.60/1.30 = 4.308. This value, too, is in the right-hand rejection region for
usual levels of significance; the p-value is small. We conclude that X, is also an impor-
tant variable in the regression equation.

The hypothesis test for B, is Hy: By = 0 versus H;: B4 # 0. Here the test statistic
value is z = 10.35/6.88 = 1.504. This value lies in the nonrejection region for lev-
els of a even larger than 0.10. The p-value is greater than 0.133, as you can verify
from a normal table. We conclude that variable X; is probably not important.
Remember our cautionary comments that preceded this discussion—there is a pos-
sibility that X; is actually an important variable. The variable may appear to have a

FIGURE 11-10 Testing Whether 8, =0
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A [ B [ ¢ T o T E T F T & [T H [T 1 T K_ [T L In
| 1_|Multiple Regression Results |Example 11-1 |
2

| 3 | 0 1 2 3 4 5 6 7 8 9 10
| 4 | Intercept Advt. Promo

| 5 | b | 47.165 1509 | 1.1487

| 6 | s(b) |_2.4704 0.281 0.3052

| 7 | t| 19.002 | 56913 | 3.7633

| 8 | p-value | 0.0000 | 0.0007 | 0.0070

slope that is not different from zero because its standard error, s(b,) = 6.88, may be
unduly inflated; the variable may be correlated with another explanatory variable
(the problem of multicollinearity). A way out of this problem is to drop another vari-
able, one that we suspect to be correlated with Xj, and see if X; becomes significant
in the new regression model. We will come back to this problem in the section on
multicollinearity and in the section on selection of variables to be included in a
regression model.

The hypothesis test about B, is Hy: B, = 0 versus H;: B, # 0. The value of the
test statistic for this test is z = 3.45/2.70 = 1.278. Again, we cannot reject the null
hypothesis that the slope parameter of X, is zero and that the variable has no
explanatory power. Note, however, the caution in our discussion of the test of B. It
is possible, for example, that X; and X, are collinear and that this is the reason for
their respective tests resulting in nonsignificance. It would be wise to drop one of
these two variables and check whether the other variable then becomes significant.
If it does, the reason for our test result is multicollinearity, and not the absence of
explanatory power of the variable in question. Another point worth mentioning is
the idea of joint inference, discussed earlier. Although the separate tests of B, and B,
both may lead to the nonrejection of the hypothesis that the parameters are zero, it
may be that the two parameters are not jointly equal to zero. This would be the situ-
ation if, in Figure 11-9, the rectangle contained the point zero while the ellipse—
the true joint confidence region for both parameters—did not contain that point.
Note that the ¢ tests are conditional. The significance or nonsignificance of a variable
in the equation is conditional on the fact that the regression equation contains the
other variables.

Finally, the test for parameter B; is H,: B; = 0 versus H,;: B; # 0. The computed
value of the test statistic is z = —4.25/0.38 = —11.184. This value falls far in the left-
hand rejection region, and we conclude that variable X; has explanatory power with
respect to the dependent variable and therefore should be included in the regression
equation. The slope parameter is negative, which means that, everything else staying
constant, the dependent variable Y decreases on average as X; increases. We note that
these tests can be carried out very quickly by just considering the p-values.

We now return to Example 11-1 and look at the rest of the results from the tem-
plate. For easy reference the results from Table 11-4 are repeated here in Table 11-5.
As seen in the table, the test statistic ¢ is very significant for both advertisement and
promotion variables, because the p-value is less than 1% in both cases. We therefore
declare that both of these variables affect the sales.

In recent years, many U.S. firms have intensified their efforts to market their prod-
ucts in the Pacific Rim. Among the major economic powers in that area are Japan,
Hong Kong, and Singapore. A consortium of U.S. firms that produce raw materials
used in Singapore is interested in predicting the level of exports from the United

EXAMPLE 11-2
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States to Singapore, as well as understanding the relationship between U.S. exports to
Singapore and certain variables affecting the economy of that country. Understanding
this relationship would allow the consortium members to time their marketing efforts
to coincide with favorable conditions in the Singapore economy. Understanding the
relationship would also allow the exporters to determine whether expansion of
exports to Singapore is feasible. The economist hired to do the analysis obtained
from the Monetary Authority of Singapore (MAS) monthly data on five economic
variables for the period of January 1989 to August 1995. The variables were U.S.
exports to Singapore in billions of Singapore dollars (the dependent variable,
Exports), money supply figures in billions of Singapore dollars (variable M1), mini-
mum Singapore bank lending rate in percentages (variable Lend), an index of
local prices where the base year is 1974 (variable Price), and the exchange rate of
Singapore dollars per U.S. dollar (variable Exchange). The monthly data are given in
Table 11-6.

TABLE 11-6 Example 11-2 Data

Row Exports M1 Lend Price Exchange
1 2.6 5.1 7.8 114 2.16
2 2.6 4.9 8.0 116 217
3 2.7 5.1 8.1 117 2.18
4 3.0 5.1 8.1 122 2.20
5 2.9 5.1 8.1 124 2.21
6 3.1 5.2 8.1 128 217
7 3.2 5.1 8.3 132 2.14
8 3.7 52 8.8 133 2.16
9 3.6 53 8.9 133 2.15

10 3.4 5.4 9.1 134 2.16
1 3.7 5.7 9.2 135 2.18
12 3.6 5.7 9.5 136 217
13 4.1 5.9 10.3 140 2.15
14 3.5 5.8 10.6 147 2.16
15 4.2 5.7 1.3 150 2.21
16 4.3 5.8 121 151 2.24
17 4.2 6.0 12.0 151 2.16
18 4.1 6.0 11.4 151 212
19 4.6 6.0 11.1 153 2.1

20 4.4 6.0 11.0 154 213

21 4.5 6.1 1.3 154 211

22 4.6 6.0 12.6 154 2.09

23 4.6 6.1 13.6 155 2.09

24 4.2 6.7 13.6 155 2.10

25 55 6.2 14.3 156 2.08

26 3.7 6.3 14.3 156 2.09

27 4.9 7.0 13.7 159 2.10

28 52 7.0 12.7 161 2.1

29 4.9 6.6 12.6 161 2.15

30 4.6 6.4 13.4 161 2.14
31 5.4 6.3 143 162 2.16
32 5.0 6.5 13.9 160 217
33 4.8 6.6 14.5 159 2.15
34 5.1 6.8 15.0 159 2.10
35 4.4 7.2 13.2 158 2.06
36 5.0 7.6 11.8 155 2.05

(Continued)
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Row Exports M1 Lend Price Exchange
37 5.1 7.2 11.2 155 2.06
38 4.8 7.1 10.1 154 2.11
39 5.4 7.0 10.0 154 212
40 5.0 7.5 10.2 154 213
41 52 7.4 11.0 153 2.04
42 4.7 7.4 11.0 152 2.14
43 5.1 7.3 10.7 152 2.15
44 4.9 7.6 10.2 152 2.16
45 4.9 7.8 10.0 151 217
46 53 7.8 9.8 152 2.20
47 4.8 8.2 9.3 152 2.21
48 4.9 8.2 9.3 152 2.15
49 5.1 8.3 9.5 152 2.08
50 4.3 8.3 9.2 150 2.08
51 4.9 8.0 9.1 147 2.09
52 53 8.2 9.0 147 2.10
53 4.8 8.2 9.0 146 2.09
54 53 8.0 8.9 145 212
55 5.0 8.1 9.0 145 213
56 5.1 8.1 9.0 146 2.14
57 4.8 8.1 9.0 147 2.14
58 4.8 8.1 8.9 147 213
59 52 8.6 8.9 147 213
60 4.9 8.8 9.0 146 213
61 5.5 8.4 9.1 147 213
62 4.3 8.2 9.0 146 213
63 52 8.3 9.2 146 2.09
64 4.7 8.3 9.6 146 2.09
65 5.4 8.4 10.0 146 2.10
66 5.2 8.3 10.0 147 2.11
67 5.6 8.2 10.1 146 215

Use the template to perform a multiple regression analysis with Exports as the
dependent variable and the four economic variables M1, Lend, Price, and Exchange
as the predictor variables. Table 11-7 shows the results.

Let us analyze the regression results. We start with the ANOVA table and the
F'test for the existence of linear relationships between the independent variables and
exports from the United States to Singapore. We have F, ¢, = 73.059 with a p-value
of “0.000.” We conclude that there is strong evidence of a linear regression relation-
ship here. This is further confirmed by noting that the coefficient of determination is
high: R? = 0.825. Thus, the combination of the four economic variables explains
82.5% of the variation in exports to Singapore. The adjusted coefficient of determi-
nation R? is a little smaller: 0.8137. Now the question is, Which of the four variables
are important as predictors of export volume to Singapore and which are not? Look-
ing at the reported p-values, we see that the Singapore money supply M1 is an impor-
tant variable; the level of prices in Singapore is also an important variable. The
remaining two variables, minimum lending rate and exchange rate, have very large
p-values. Surprisingly, the lending rate and the exchange rate of Singapore dollars to
U.S. dollars seem to have no effect on the volume of Singapore’s imports from the
United States. Remember, however, that we may have a problem of multicollinearity.

© The McGraw-Hill
Companies, 2009
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TABLE 11-7 Regression Results from the Template for Exports to Singapore
[Multiple Regression.xls]

Multiple Regression Results |Expons
0 1 2 3 4 5 6 7 8 9 10
Intercept M1 Lend Price Exch.
b | -40155 [ 0.3685 | 0.0047 | 0.0365 | 0.2679
s(b) | 27664 | 00638 | 0.0492 | 0.0093 | 1.1754
t| -1.4515 | 57708 | 0.0955 | 3.9149 | 0.2279
p-value | 0.1517 | 0.0000 | 0.9242 | 0.0002 | 0.8205
ANOVA Table
Source Ss df MS F [ Fritical [p-valuel
Regn. | 32.946 4 8.2366 | 73.059 | 2.5201 | 0.0000 | s
Eror | 6.9898 62 0.1127
Total | 39.936 66 R} 0.8250 Adjusted R2

This is especially true when we are dealing with economic variables, which tend to
be correlated with one another.”

When M1 is dropped from the equation and the new regression analysis consid-
ers the independent variables Lend, Price, and Exchange, we see that the lending
rate, which was not significant in the full regression equation, now becomes signifi-
cant! This is seen in Table 11-8. Note that R? has dropped greatly with the removal of
M1. The fact that the lending rate is significant in the new equation is an indication of
multicollinearity; variables M1 and Lend are correlated with each other. Therefore,
Lend is not significant when M1 is in the equation, but in the absence of M1, Lend
does have explanatory power.

Note that the exchange rate is still not significant. Since R? and the adjusted R?
both decrease significantly when the money supply M1 is dropped, let us put that
variable back into the equation and run U.S. exports to Singapore versus the inde-
pendent variables M1 and Price only. The results are shown in Table 11-9. In this
regression equation, both independent variables are significant. Note that R? in this
regression is virtually the same as R? with all four variables in the equation (see

TABLE 11-8 Regression Results for Singapore Exports without M1

Multiple Regression Results |Expons
0 1 2 3 4 5 6 7 8 9 10
Intercept Lend Price Exch.
b | -0.2891 | -0.2114 | 0.0781 | -2.095
s(b) | 3.3085 | 0.0393 | 0.0073 | 1.3551
t | -0.0874 | -5.3804 10.753 | -1.546
p-value | 0.9306 | 0.0000 | 0.0000 | 0.1271
ANOVA Table
Source SS df MS F [ Feritical p-value‘
Regn. | 29.192 3 9.7306 | 57.057 | 2.7505 | 0.0000 |
Error | 10.744 63 0.1705
Total | 39.936 66 Rl 0.7310 Adjusted R?

9The analysis of economic variables presents special problems. Economists have developed methods that account for
the intricate interrelations among economic variables. These methods, based on multiple regression and time series analy-
sis, are usually referred to as econometric methods.
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Multiple Regression Results IExpons
0 1 2 3 4 5 6 7 8 10
Intercept M1 Price

b | -3.423 0.3614 0.0037

s(b) | 0.5409 0.0392 0.0041
t | -6.3288 9.209 9.0461

p-value | 0.0000 0.0000 0.0000

ANOVA Table
Source ss df MS F [ Feritical [ p-value [
Regn. | 32.94 2 16.47 | 150.67 | 3.1404 | 0.0000 | s [ 0.3306 |
Error | 6.9959 64 0.1093
Total | 39936 | 66 R 08245 | Adjusted R®[ 0.6193 |

Table 11-7). However, the adjusted coefficient of determination R? is different. The
adjusted R? actually increases as we drop the variables Lend and Exchange. In the full
model with the four variables (Table 11-7), R? = 0.8137, while in the reduced model,
with variables M1 and Price only (Table 11-9), R* = 0.8193. This demonstrates the
usefulness of the adjusted R*>. When unimportant variables are added to the equation
(unimportant in the presence of other variables), R? decreases even if R? increases.
The best model, in terms of explanatory power gauged against the loss of degrees of
freedom, is the reduced model in Table 11-9, which relates exports to Singapore with
only the money supply and price level. This is also seen by the fact that the other two
variables are not significant once M1 and Price are in the equation. Later, when we
discuss stepwise regression—a method of letting the computer choose the best vari-
ables to be included in the model-we will see that this automatic procedure also
chooses the variables M1 and Price as the best combination for predicting U.S.
exports to Singapore.

PROBLEMS

11-28. A regression analysis is carried out, and a confidence interval for 8, is com-
puted to be [1.25, 1.55]; a confidence interval for B, is [2.01, 2.12]. Both are 95% con-
fidence intervals. Explain the possibility that the point (1.26, 2.02) may not lie inside
a joint confidence region for (B, B,) at a confidence level of 95%.

11-29. A multiple regression model was developed for predicting firms’ gover-
nance level, measured on a scale, based on firm size, firm profitability, fixed-asset
ratio, growth opportunities, and nondebt tax shield size. For firm size, the coefficient
estimate was 0.06 and the standard error was 0.005. For firm profitability, the estimate
was —0.166 and the standard error was 0.03. For fixed-asset ratio the estimate was
—0.004 and standard error 0.05. For growth opportunities the estimate was -0.018
and standard error 0.025. And for nondebt tax shield the estimate was 0.649 and
standard error 0.151. The F statistic was 44.11 and the adjusted R?> was 16.5%.1
Explain these results completely and offer a next step in this analysis. Assume a very
large sample size.

Pornsit Jiraporn and Kimberly C. Gleason, “Capital Structure, Shareholder Rights, and Corporate Governance,”
Journal of Financial Research 30, no. 1 (2007), pp. 21-33.
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11-30. Give three reasons why caution must be exercised in interpreting the sig-
nificance of single regression slope parameters.

11-31.  Give 95% confidence intervals for the slope parameters 3, through B;, using
the information in Table 11-4. Which confidence intervals contain the point (0, 0)?
Explain the interpretation of such outcomes.

11-32. A regression analysis was carried out to predict a firm’s reputation (defined
on a scale called the Carter-Manaster reputation ranking) on the basis of unexpected
accruals, auditor quality, return on investment, and expenditure on research and
development. The parameter estimates (and standard errors, in parentheses), in the
order these predictor variables are listed, are —2.0775(0.4111), —0.1116(0.2156),
0.4192(0.2357), and 0.0328(0.0155). The number of observations was 487, and the R?
was 36.51%.1 Interpret these findings.

11-33. A computer program for regression analysis produces a joint confidence
region for the two slope parameters considered in the regression equation, B,
and B,. The elliptical region of confidence level 95% does not contain the point
(0, 0). Not knowing the value of the F'statistic, or R?, do you believe there is a linear
regression relationship between Yand at least one of the two explanatory variables?
Explain.

11-34. In the Nissan Motor Company situation of problems 11-14 and 11-21, the

regression results, using MINITAB, are as follows. Give a complete interpretation of
these results.

The regression equation is
RATING = 24.1 — 0.166 PRESTIGE + 0.324 COMFORT + 0.514 ECONOMY

Predictor Coef Stdev
Constant 24.14 18.22
PRESTIGE —0.1658 0.1215
COMFORT 0.3236 0.1228
ECONOMY 0.5139 0.1143

11-35. Refer to Example 11-2, where exports to Singapore were regressed on sev-
eral economic variables. Interpret the results of the following MINITAB regression
analysis, and compare them with the results reported in the text. How does the pres-
ent model fit with the rest of the analysis? Explain.

The regression equation is

EXPORTS = — 3.40 + 0.363 M1 + 0.0021 LEND + 0.0367 PRICE
Predictor Coef Stdev t-ratio P
CONSTANT —3.4047 0.6821 —4.99 0.000
M1 0.36339 0.05940 6.12 0.000
LEND 0.00211 0.04753 0.04 0.965
PRICE 0.036666 0.009231 3.97 0.000

s = 0.3332 R-sq = 82.5% R-sg (adj) = 81.6%

11-36. After the model of problem 11-35, the next model was run:

The regression equation is
EXPORTS = — 1.09 + 0.552 M1 + 0.171 LEND

UHoje Jo, Yongtae Kim, and Myung Seok Park, “Underwriter Choice and Earnings Management: Evidence from
Seasoned Equity Offerings,” Review of Accounting Studies 12, no. 1 (2007), pp. 23-59.
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Predictor Coef Stdev t-ratio P
Constant —1.0859 0.3914 —2.77 0.007
M1 0.55222 0.03950 13.98 0.000
LEND 0.17100 0.02357 7.25 0.000
s = 0.3697 R-sg = 78.1% R-sqg (adj) = 77.4%

Analysis of Variance

SOURCE DF SS MS F P
Regression 2 31.189 15.594 114.09 0.000
Error 64 8.748 0.137
Total 66 39.936

a. What happened when Price was dropped from the regression equation?
Why?

b. Compare this model with all previous models of exports versus the
economic variables, and draw conclusions.

¢. Which model is best overall? Why?

d. Conduct the F'test for this particular model.

e. Compare the reported value of sin this model with the reported s value
in the model of problem 11-35. Why is s higher in this model?

J For the model in problem 11-35, what is the mean square error?

11-37. A regression analysis of monthly sales versus four independent variables is
carried out. One of the variables is known not to have any effect on sales, yet its slope
parameter in the regression is significant. In your opinion, what may have caused this
to happen?

11-38. A study of 14,537 French firms was carried out to assess employment growth
based on levels of new technological process, organizational innovation, commercial
innovation, and research and development. The R? was 74.3%. The coefficient esti-
mates for these variables (and standard errors) were reported, in order, as follows:
—0.014(0.004), 0.001(0.004), 0.016(0.005), and 0.027(0.006).”> Which of these variables
have explanatory power over a firm’s employment growth? Explain.

11-39. Run a regression of profits against revenues and number of employees
for the airline industry using the data in the following table. Interpret all your
findings.

Profit Revenue Employees

($ billion) ($ billion) (thousands)
-1.2 17 96
-2.8 13 68
-0.2 13 70
0.2 9.5 39
0.03 8.8 38
1.4 6.8 32
0.4 5.9 33
0.01 2.4 13
0.06 2.3 11
0.1 1.3 6

ZPierre Biscourp and Francis Kramarz, “Employment, Skill Structure and Internal Trade: Firm-Level Evidence for
France,” Journal of International Economics 72 (May 2007), pp. 22-51.
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11-6 Testing the Validity of the Regression Model

In Chapter 10, we stressed the importance of the three stages of statistical model
building: model specification, estimation of parameters, and testing the validity of the
model assumptions. We will now discuss the third and very important stage of check-
ing the validity of the model assumptions in multiple regression analysis.

Residual Plots

As with simple linear regression, the analysis of regression residuals is an important
tool for determining whether the assumptions of the multiple regression model are
met. Residual plots are easy to use, and they convey much information quickly. The
saying “A picture is worth a thousand words” is a good description of the technique
of examining plots of regression residuals. As with simple linear regression, we may
plot the residuals against the predicted values of the dependent variable, against each
independent variable, against time (or the order of selection of the data points), and
on a probability scale, to check the normality assumption. Since we have already dis-
cussed the use of residual plots in Chapter 10, we will demonstrate only some of the
residual plots, using Example 11-2. Figure 11-11 is a plot of the residuals produced
from the model with the two independent variables M1 and Price (Table 11-9)
against variable M1. It appears that the residuals are randomly distributed with no
pattern and with equal variance as M1 increases.

Figure 11-12 is a plot of the regression residuals against the variable Price. Here
the picture is quite different. As we examine this figure carefully, we see that the spread
of the residuals increases as Price increases. Thus, the variance of the residuals is not
constant. We have the situation called /eteroscedasticity—a violation of the assumption of
equal error variance. In such cases, the ordinary least-squares (OLS) estimation method
is not efficient, and an alternative method, called weighted least squares (WLS), should be
used instead. The WLS procedure is discussed in advanced texts on regression analysis.

Figure 11-13 is a plot of the regression residuals against the variable Time, that is,
the order of the observations. (The observations are a time sequence of monthly data.)
This variable was not included in the model, and the plot could reveal whether time
should have been included as a variable in our regression model. The plot of the resid-
uals against time reveals no pattern in the residuals as time increases. The residuals
seem to be more or less randomly distributed about their mean of zero.

Figure 11-14 is a plot of the regression residuals against the predicted export
values ¥. We leave it as an exercise to the reader to interpret the information in

this plot.
Standardized Residuals

Remember that under the assumptions of the regression model, the population errors
€; are normally distributed with mean zero and standard deviation o. As a result,

FIGURE 11-11 Residuals versus M1
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FIGURE 11-15 The Normal Probability Plot of the Residuals
[Multiple Regression.xls; Sheet: Residuals]

e ™)
Normal Probability Plot

Corresponding Normal Z

L Residual )

the errors divided by their standard deviation should follow the standard normal
distribution:

< - .
o ~ N(0, 1) © forall

Therefore, dividing the observed regression errors ¢; by their estimated standard
deviation s will give us standardized residuals. Examination of a histogram of these
residuals may give us an idea as to whether the normal assumption is valid.®

The Normal Probability Plot

Just as we saw in the simple regression template, the multiple regression template
also produces a normal probability plot of the residuals. If the residuals are perfectly
normally distributed, they will lie along the diagonal straight line in the plot. The
more they deviate from the diagonal line, the more they deviate from the normal dis-
tribution. In Figure 11-15, the deviations do not appear to be significant. Conse-
quently, we assume that the residuals are normally distributed.

Outliers and Influential Observations

An outlier is an extreme observation. It is a point that lies away from the rest of the data
set. Because of this, outliers may exert greater influence on the least-squares estimates
of the regression parameters than do other observations. To see why, consider the data
in Figure 11-16. The graph shows the estimated least-squares regression line without the
outlier and the line obtained when the outlier is considered.

As can be seen from Figure 11-16, the outlier has a strong effect on the estimation
of model parameters. (We used a line showing Y versus variable X,. The same is true
for a regression plane or hyperplane: The outlier “tilts” the regression surface away
from the other points.) The reason for this effect is the nature of least squares: The
procedure minimizes the squared deviations of the data points from the regression
surface. A point with an unusually large deviation “attracts” the surface toward itself
so as to make its squared deviation smaller.

We must, therefore, pay special attention to outliers. If an outlier can be traced to
an error in recording the data or to another type of error, it should, of course, be
removed. On the other hand, if an outlier is not due to error, it may have been caused
by special circumstances, and the information it provides may be important. For exam-
ple, an outlier may be an indication of a missing variable in the regression equation.

3Actually, the residuals are not independent and do not have equal variance; therefore, we really should divide the
residuals ¢; by something a little more complicated than s. However, the simpler procedure outlined here and implemented
in some computer packages is usually sufficiently accurate.
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FIGURE 11-16 A Least-Squares Regression Line Estimated with and without the Outlier

y The estimated regression line
when the outlier is ignored
\ The estimated regression
o line when the outlier

is considered

An outlier

X

The data shown in Figure 11-16 may be maximum speed for an automobile as a func-
tion of engine displacement. The outlier may be an automobile with four cylinders,
while all others are six-cylinder cars. Thus, the fact that the point lies away from the
rest may be explained. Because of the possible information content in outliers, they
should be carefully scrutinized before being discarded. Some alternative regression
methods do not use a squared-distance approach and are therefore more robust—less
sensitive to the influence of outliers.

Sometimes an outlier is actually a point that is distant from the rest because the
value of one of its independent variables is larger than the rest of the data. For exam-
ple, suppose we measure chemical yield Yas a function of temperature X;. There may
be other variables, but we will consider only these two. Suppose that most of our data
are obtained at low temperatures within a certain range, but one observation is taken
at a high temperature. This outlying point, far in the X, direction, exerts strong in-
fluence on the estimation of the model parameters. This is shown in Figure 11-17.
Without the point at high temperature, the regression line may have slope zero, and
no relationship may be detected, as can be seen from the figure. We must also be

FIGURE 11-17 Influence of an Observation Far in the X; Direction

A point with a
large value of X1

The regression line
using all the data

No relation in the
cluster of points
(slope = 0)

T

> X
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FIGURE 11-18 Possible Relation in the Region between the Available Cluster of Data
and the Far Point

More appropriate
curvilinear relationship
(seen when the in-between
data are known)

A point with a
large value of X

X X

Some of the possible
data between the
original cluster and
the far point

> X,

careful in such cases to guard against estimating a straight-line relation where a curvi-
linear one may be more appropriate. This could become evident if we had more data
points in the region between the far point and the rest of the data. This is shown in
Figure 11-18.

Figure 11-18 serves as a good reminder that regression analysis should not be
used for extrapolation. We do not know what happens in the region in which we have
no data. This region may be between two regions where we have data, or it may
lie beyond the last observation in a given direction. The relationship may be quite
different from what we estimate from the data. This is also a reason why forcing the
regression surface to go through the origin (that is, carrying out a regression with no
constant term B, = 0), as is done in some applications, is not a good idea. The rea-
soning in such cases follows the idea expressed in the statement “In this particular
case, when there is zero input, there must be zero output,” which may very well be
true. Forcing the regression to go through the origin, however, may make the estima-
tion procedure biased. This is because in the region where the data points are
located—assuming they are not near the origin—the best straight line to describe the
data may not have an intercept of zero. This happens when the relationship is not a
straight-line relationship. We mentioned this problem in Chapter 10.

A data point far from the other point in some X; direction is called an influential
observation if it strongly affects the regression fit. Statistical techniques can be used to test
whether the regression fit is strongly affected by a given observation. Computer routines
such as MINITAB automatically search for outliers and influential observations,
reporting them in the regression output so that the user is alerted to the possible effects
of these observations. Table 11-10 shows part of the MINITAB output for the analysis
of Example 11-2. The table reports “unusual observations”: large residuals and influ-
ential observations that affect the estimation of the regression relationship.

Lack of Fit and Other Problems

Model lack of fit occurs if, for example, we try to fit a straight line to curved data.
The statistical method of determining the existence of lack of fit consists of breaking
down the sum of squares for error to a sum of squares due to pure error and a sum
of squares due to lack of fit. The method requires that we have observations at equal
values of the independent variables or near-neighbor points. This method is described
in advanced texts on regression.
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Unusual Observations

Obs. M1 EXPORTS Fit Stdev.Fit
1 5.10 2.6000 2.6420 0.1288
2 4.90 2.6000 2.6438 0.1234

25 6.20 5.5000 4.5949 0.0676

26 6.30 3.7000 4.6311 0.0651

50 8.30 4.3000 5.1317 0.0648

67 8.20 5.6000 4.9474 0.0668

R denotes an obs.

X denotes an obs.

with a large st.resid.

Residual

-0.
-0.
0.
-0.
-0.
0.

0420
0438
9051
9311
8317
6526

whose X value gives it large influence.

st.

Resid

.14 X
.14 X
.80R
.87R
.57R
.02R

A statistical method for determining whether the errors in a regression model
are correlated through time (thus violating the regression model assumptions) is the
Durbin-Watson test. This test is discussed in a later section of this chapter. Once we
determine that our regression model is valid and that there are no serious violations

of assumptions, we can use the model for its intended purpose.

PROBLEMS

11-40. Analyze the following plot of the residuals versus Y.

Residual Plot

05

Residual

-0.5

v

11-41. The normal probability plots of two regression experiments are given below.

For each case, give your comments.

a. Normal Probability Plot b Normal Probability Plot
£ g
E -20 15 -10 5 5 10 20 E - 2 4
t " ©
R:sldual y R:slﬂual
11-42. Explain what an outlier is.
11-43. How can you detect outliers? Discuss two ways of doing so.
11-44. Why should outliers not be discarded and the regression run without them?
11-45. Discuss the possible effects of an outlier on the regression analysis.
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11-46. What is an influential observation? Give a few examples.

11-47. What are the limitations of forcing the regression surface to go through the
origin?
11-48. Analyze the residual plot of Figure 11-14.

11-7 Using the Multiple Regression Model
for Prediction

The use of the multiple regression model for prediction follows the same lines as in
the case of simple linear regression, discussed in Chapter 10. We obtain a regression
model prediction of a value of the dependent variable Y, based on given values of the
independent variables, by substituting the values of the independent variables into
the prediction equation. That is, we substitute the values of X; variables into the equa-
tion for Y. We demonstrate this in Example 11-1.

The predicted value of Yis given by substituting the given values of advertising
X, and in-store promotions X, for which we want to predict sales Y into equation
11-6, using the parameter estimates obtained in Section 11-2. Let us predict sales
when advertising is at a level of $10,000 and in-store promotions are at a level of
$5,000.

Y = 47165 + 1.599X, + 1.149X,
= 47165 + (1.599)(10) + (1.149)(5) = 68.9 (thousand dollars)

This prediction is not bad, since the value of Yactually occurring for these values of
X, and X, is known from Table 11-1 to be ¥ = 70 (thousand dollars). Our point
estimate of the expected value of ¥, denoted E(Y), given these values of X, and X,, is
also 68.9 (thousand dollars). Note that our predictions lie on the estimated regression
surface. The estimated regression surface for Example 11-1 is the plane shown in Fig-
ure 11-19.

FIGURE 11-19 Estimated Regression Plane for Example 11-1

Sales
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We may also compute prediction intervals as well as confidence intervals for
E(Y), given values of the independent variables. As you recall, while the predicted
value and the estimate of the mean value of Y are equal, the prediction interval is
wider than a confidence interval for E(Y’) using the same confidence level. There is
more uncertainty about the predicted value than there is about the average value
of Y given the values X;. The equation for a (1 — «) 100% prediction interval is an
extension of equation 10-32 for simple linear regression. The only difference is that
the degrees of freedom of the ¢ distribution are n — (k + 1) rather than just n — 2, as
is the case for £ = 1. The standard error, when there are several explanatory vari-
ables, is a complicated expression, and we will not give it here; we will denote it by
s(Y). The prediction interval is given in equation 11-17.

A (1 — o) 100% prediction interval for a value of Y given values of X; is

y= bias2, n—(k+ 1)) s2(Y) + MSE (11-17)

While the expression in the square root is complex, it is computed by most computer
packages for regression. The prediction intervals for any values of the independent
variables and a given level of confidence are produced as output.

Similarly, the equation for a (1 — ) 100% confidence interval for the conditional
mean of Yis an extension of equation 10-33 for the simple linear regression. It is
given as equation 11-18. Again, the degrees of freedom are n — (k + 1). The formula
for the standard error is complex and will not be given here. We will call the standard
error s[E(Y)]. The confidence interval for the conditional mean of Y is computable
and may be reported, upon request, in the output of most computer packages that
include regression analysis.

A (1 — a) 100% confidence interval for the conditional mean of Yis

y* tos2, n—k+1S [E(Y)] (11-18)

Equations 11-17 and 11-18 are implemented in the template on the Results sheet.
These equations are also produced by other computer packages for regression, and
are presented here—as many other formulas—for information only." To make a pre-
diction, we enter the values of the independent variables in row 22 and the confi-
dence level desired in row 25. Table 11-11 shows the case of Example 11-2 with

TABLE 11-11 Prediction Using Multiple Regression
[Multiple Regression.xls; Sheet: Results]

© The McGraw-Hill
Companies, 2009

501

| 19 |Prediction Interval

20

[21 ] Given x [ w1 ] Price | l l l l l l l l
[22] T 5 ¥ 150 ] | | | l l l l ]
1 23 |

24 [ 1-a [ (1—a)P..for Y for given X | [(1-e (1—a) PLfor EIY IX] |

[ 25] [ 95% | 3939 +or- 06846 | [ 95% 3939 +or- 01799 |

26

“Note also that equations 11-17 and 11-18 are extensions to multiple regression of the analogous equations, 10-32
and 10-33, of simple linear regression—which is a special case of multiple regression with one explanatory variable.
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independent variables M1 and Price. The 95% prediction interval has been computed
for the exports when M1 = 5 and Price = 150. A similar interval for the expected
value of the exports for the given M1 and Price values has also been computed. The
two prediction intervals appear in row 24.

The predictions are not very reliable because of the heteroscedasticity we dis-
covered in the last section, but they are useful as a demonstration of the procedure.
Remember that it is never a good idea to try to predict values outside the region of
the data used in the estimation of the regression parameters, because the regression
relationship may be different outside that range. In this example, all predictions use
values of the independent variables within the range of the estimation data.

When using regression models, remember that a regression relationship between
the dependent variable and some independent variables does not imply causality.
Thus, if we find a linear relationship between Y and X, it does not necessarily mean
that X causes Y. Causality is very different to determine and to prove. There is also the
issue of spurious correlations between variables—correlations that are not real.
Montgomery and Peck give an example of a regression analysis of the number of
mentally disturbed people in the United Kingdom versus the number of radio receiver
licenses issued in that country.”® The regression relationship is close to a perfect
straight line, with 72 = 0.9842. Can the conclusion be drawn that there is a relation-
ship between the number of radio receiver licenses and the incidence of mental
illness? Probably not. Both variables—the number of licenses and the incidence of
mental illness—are related to a third variable: population size. The increase in both of
these variables reflects the growth of the population in general, and there is probably
no direct connection between the two variables. We must be very careful in our inter-
pretation of regression results.

The Template

The multiple regression template [Multiple Regression.xls] consists of a total of five
sheets. The sheet titled “Data” is used to enter the data (see Figure 11-28 for an exam-
ple). The sheet titled “Results” contains the regression coefficients, their standard
errors, the corresponding ¢ tests, the ANOVA table, and a panel for prediction inter-
vals. The sheet titled “Residuals” contains a plot of the residuals, the Durbin-Watson
statistic (described later), and a normal probability plot for testing the normality
assumption of the error term. The sheet titled “Correl” displays the correlation coef-
ficient between every pair of variables. The use of the correlation matrix is described
later in this chapter. The sheet titled “Partial F” can be used to find partial , which is
also described later in this chapter.

Setting Recalculation to “Manual” on the Template

Since the calculations performed in the multiple regression template are voluminous,
a recalculation can take a little longer than in other templates. Therefore, entering
data in the Data sheet may be difficult, especially on slower PCs (Pentium II or ear-
lier), because the computer will recalculate every result before taking in the next data
entry. If this problem occurs, set the Recalculation feature to manual. This can be
done by clicking the Microsoft Office button and then Formulas. Choose Manual
under the Calculation options. When this is done, a change made in the data or in
any cell will not cause the spreadsheet to automatically update itself. Only when recalcula-
tion is manually initiated will the spreadsheet update itself. To initiate recalculation,
press the F9 key on the keyboard. A warning message about pressing the F9 key is
displayed at a few places in the template. If the recalculation has not been set to
manual, this message can be ignored.

D. Montgomery, E. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 4th ed. (New York: Wiley, 2006).
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Note also that when the recalculation is set to manual, none of the open spreadsheets
will update itself. That is, if other spreadsheets were open, they will not update them-
selves either. The F9 key needs to be pressed on every open spreadsheet to initiate
recalculation. This state of manual recalculation will continue until the Excel pro-
gram is closed and reopened. For this reason, set the recalculation to manual only
after careful consideration.
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PROBLEMS

11-49. Explain why it is not a good idea to use the regression equation for pre-
dicting values outside the range of the estimation data set.

11-50. Use equation 11-6 to predict sales in Example 11-1 when the level of adver-
tising is $8,000 and in-store promotions are at a level of $12,000.

11-51. Using the regression relationship you estimated in problem 11-8, predict the
value of a home 1,800 square feet located 2.0 miles from the center of the town.

11-52. Using the regression equation from problem 11-25, predict excess stock
return when SIZRNK = 5 and PRCRNK = 6.

11-53. Using the information in Table 11-11, what is the standard error of Y? What

is the standard error of E(Y)?

11-54. Use a computer to produce a prediction interval and a confidence interval
for the conditional mean of Y for the prediction in problem 11-50. Use the data in
Table 11-1.

11-55. What is the difference between a predicted value of the dependent variable
and the conditional mean of the dependent variable?

11-56. Why is the prediction interval of 95% wider than the 95% confidence inter-
val for the conditional mean, using the same values of the independent variables?

11-8 Qualitative Independent Variables

The variables we have encountered so far in this chapter have all been gquantitative
variables: variables that can take on values on a scale. Sales volume, advertising
expenditure, exports, the money supply, and people’s ratings of an automobile are
all examples of quantitative variables. In this section, we will discuss the use of
qualitative variables as explanatory variables in a regression model. Qualitative vari-
ables are variables that describe a quality rather than a quantity. This should remind
you of analysis of variance in Chapter 9. There we had qualitative variables: the kind
of resort in the Club Med example, type of airplane, type of coffee, and so on.

In some cases, including information on one or more qualitative variables in our
multiple regression model is very useful. For example, a hotel chain may be inter-
ested in predicting the number of occupied rooms as a function of the economy of
the area in which the hotel is located, as well as advertising level and some other
quantitative variables. The hotel may also want to know whether the peak season is
in progress—a qualitative variable that may have a lot to do with the level of occu-
pancy at the hotel. A property appraiser may be interested in predicting the value of
different residential units on the basis of several quantitative variables, such as age of
the unit and area in square feet, as well as the qualitative variable of whether the unit
is owned or rented.

Each of these qualitative variables has only two levels: peak season versus nonpeak
season, rental unit versus nonrental unit. An easy way to quantify such a qualitative
variable is by way of a single indicator variable, also called a dummy variable.
An indicator variable is a variable that indicates whether some condition holds. It
has the value 1 when the condition holds and the value 0 when the condition does

%

CHAPTER 19
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not hold. If you are familiar with computer science, you probably know the indica-
tor variable by another name: binary variable, because it takes on only two possible
values, 0 and 1.

When included in the model of hotel occupancy, the indicator variable will equal
0 if it is not peak season and 1 if it is (or vice versa; it makes no difference). Similarly,
in the property value analysis, the dummy variable will have the value 0 when the
unit is rented and the value 1 when the unit is owned, or vice versa. We define the
general form of an indicator variable in equation 11-19.

An indicator variable of qualitative level A is

X - {1 if level A is obtained
"~ 10 if level A is not obtained (11-19)

The use of indicator variables in regression analysis is very simple. No special
computational routines are required. All we do is code the indicator variable as 1
whenever the quality of interest is obtained for a particular data point and as 0 when
it is not obtained. The rest of the variables in the regression equation are left the
same. We demonstrate the use of an indicator variable in modeling a qualitative vari-
able with two levels in the following example.

EXAMPLE 11-3

Solution

A motion picture industry analyst wants to estimate the gross earnings generated
by a movie. The estimate will be based on different variables involved in the film’s
production. The independent variables considered are X; = production cost of the
movie and X, = total cost of all promotional activities. A third variable that the ana-
lyst wants to consider is the qualitative variable of whether the movie is based on a
book published before the release of the movie. This third, qualitative variable is
handled by the use of an indicator variable: X; = 0 if the movie is not based on a
book, and X; = 1 if it is. The analyst obtains information on a random sample of 20
Hollywood movies made within the last 5 years (the inference is to be made only
about the population of movies in this particular category). The data are given in
Table 11-12. The variable Y is gross earnings, in millions of dollars. The two quanti-
tative independent variables are also in millions of dollars.

The data are entered into the template. The resulting output is presented in Fig-
ure 11-20. The coefficient of determination of this regression is very high; the F'statis-
tic value is very significant, and we have a good regression relationship. From the
individual ¢ratios and their p-values, we find that all three independent variables are
important in the equation.

From the intercept of 7.84, we could (erroneously, of course) deduce that a movie
costing nothing to produce or promote, and that is not based on a book, would still
gross $7.84 million! The point 0 (X; = 0, X, = 0, X; = 0) is outside the estimation
region, and the regression relationship may not hold for that region. In our case, it
evidently does not. The intercept is merely a reference point used to move the regres-
sion surface upward to where it should be in the estimation region.

The estimated slope for the cost variable, 2.85, means that—within the estimation
region—an increase of $1 million in a movie’s production cost (the other variables
held constant) increases the movie’s gross earnings by an average of $2.85 million.
Similarly, the estimated slope coefficient for the promotion variable means that,
in the estimation region of the variables, an increase of $1 million in promotional
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11. Multiple Regression

Text

Multiple Regression

Gross Earnings Y,

Movie Million $
1 28
2 35
3 50
4 20
5 75
6 60
7 15
8 45
9 50

10 34
11 48
12 82
13 24
14 50
15 58
16 63
17 30
18 37
19 45
20 72

Production Cost X,

Million $

4.2
6.0
5.5
3.3
12.5
9.6
2.5
10.8
8.4
6.6
10.7
11.0
3.5
6.9
7.8
10.1
5.0
7.5
6.4
10.0

Promotion Cost X,,

Million $ Book X,
1 0
3 1
6 1
1 0

11 1
8 1
0.5 0
5 0
3 1
2 0
1 1

15 1
4 0

10 0
9 1

10 0
1 1
5 0
8 1

12 1

activities (with the other variables constant) increases the movie’s gross earnings by
an average of $2.28 million.

How do we interpret the estimated coefficient of variable X;? The estimated coef-
ficient of 717 means that having the movie based on a published book (X; = 1)
increases the movie’s gross earnings by an average of $7.17 million. Again, the infer-
ence is valid only for the region of the data used in the estimation. When X; = 0, that
is, when the movie is not based on a book, the last term in the estimated equation
for Y drops out—there is no added $7.17 million.

What do we learn from this example about the function of the indicator variable?
Note that the predicted value of Y, given the values of the quantitative independent

FIGURE 11-20 Multiple Regression Results for Example 11-3.
[Multiple Regression.xls; Sheet: Results]
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A [ B [ ¢ T b JT E T F T & T ® [T 1 T 9 T « T ¢t 1T
| 1 |Multiple Regression Results IMovies |
2
[ 3| 0 1 2 3 4 5 6 7 8 9 10
| 4 | Intercept | rod.Cos | Promo Book
| 5 | b| 78362 | 28477 | 2.2782 | 7.1661
[ 6 | s(b) | 23334 | 03923 | 02534 | 1.818
1 7 | t| 33583 | 7.0582 | 8.9894 | 3.9418
| 8 | p-value [ 0.0040 | 0.0000 | 0.0000 | 0.0012
| 9 |
10
L 111 ANOVA Table
112 | Source Sss df Ms F [ Feritical [ p-value[
13 Regn. | 6325.2 3 2108.4 | 154.89 | 3.2389 | 0.0000 | s [ 36895 |
14| Error | 217.8 16 | 13.612
|15 | Total | 6543 19 R o.0667 ] Adjusted R2[ 0.9605 |
16
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FIGURE 11-21 Two Regression Planes of Example 11-3

Plane corresponding to X;= 1

by,=7.17
Plane corresponding to X;= 0

Movie based on book

w
Movie not based on book

/ T

variables, shifts upward (or downward, depending on the sign of the estimated coeffi-
cient) by an amount equal to the coefficient of the indicator variable whenever the
variable is equal to 1. In this particular case, the surface of the regression—the plane
formed by the variables Y, X, and X,—is split into two surfaces: one corresponding
to movies based on books and the other corresponding to movies not based on
books. The appropriate surface depends on whether X; = 0 or X; = 1; the two esti-
mated surfaces are separated by a distance equal to 4, = 7.17. This is demonstrated in
Figure 11-21. The regression surface in this example is a plane, so we can draw its
image (for a higher-dimensional surface, the same idea holds).

We will now look at the simpler case, with one independent quantitative variable
and one indicator variable. Here we assume an estimated regression relationship of
the form Y = §, + b X, + b,X,, where X is a quantitative variable and X, is an in-
dicator variable. The regression relationship is a straight line, and the indicator vari-
able splits the line into two parallel straight lines, one for each level (0 or 1) of the
qualitative variable. The points belonging to one level (a level could be Book, as in
Example 11-3) are shown as triangles, and the points belonging to the other level are
shown as squares. The distance between the two parallel lines (measured as the
difference between the two intercepts) is equal to the estimated coefficient of the
dummy variable X,. The situation is demonstrated in Figure 11-22.

We have been dealing with qualitative variables that have only two levels.
Therefore, it has sufficed to use an indicator variable with two possible values, 0 and 1.
What about situations where we have a qualitative variable with more than two levels?
Should we use an “indicator” variable with more than two values? The answer is no.
Were we to do this and give our variable values such as 0, 1, 2, 3, . . ., to indicate qual-
itative levels, we would be using a quantitative variable that has several discrete values
but no values in between. Also, the assignment of the qualities to the values would
be arbitrary. Since there may be no justification for using the values 1, 2, 3, etc., we
would be imposing a very special measuring scale on the regression problem—a scale
that may not be appropriate. Instead, we will use several indicator variables.

We account for a qualitative variable with r levels by the use of r — 1
indicator (0/1) variables.
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FIGURE 11-22 A Regression with One Quantitative Variable and One Dummy Variable

Y o

Line for X, =1

Slope = b,

Line for X,= 0

We will now demonstrate the use of this rule by changing Example 11-3 somewhat.
Suppose that the analyst is interested not in whether a movie is based on a book, but
rather in using an explanatory variable that represents the category to which each
movie belongs: adventure, drama, or romance. Since this qualitative variable has
r = 3 levels, the rule tells us that we need to model this variable by using r — 1 = 2
indicator variables. Each of the two indicator variables will have one of two possible
values, as before: 0 or 1. The setup of the two dummy variables indicating the level of
the qualitative variable, movie category, is shown in the following table. For sim-
plicity, let us also assume that the only quantitative variable in the equation is pro-
duction cost (we leave out the promotion variable). This will allow us to have lines
rather than planes. We let X; = production cost, as before. We now define the two
dummy variables X, and X;.

Category X, X5
Adventure 0 0
Drama 0 1

Romance 1 0

The definition of the values of X, and X, for representing the different categories is
arbitrary; we could just as well have assigned the values X, = 0, X; = 0 to drama or
to romance as to adventure. The important thing to remember is that the number of
dummy variables is 1 less than the number of categories they represent. Otherwise
our model will be overspecified, and problems will occur. In this example, variable
X, is the indicator variable for romance; when a movie is in the romance category,
this variable has the value 1. Similarly, X; is the indicator for drama and has the
value 1 in cases where a movie is in the drama category. Only three categories are
under consideration, so when both X, and X, are zero, the movie is neither a drama
nor a romance; therefore, it must be an adventure movie.
If we use the model

Y=08,+ B X + BX, + B X; + € (11-20)

with X, and X, as defined, we will be estimating three regression lines, one line per
category. The line for adventure movies will be Y’ = 4, + 5, X, because here both X,
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and Xj are zero. The drama line will be Y= b, + b, + b X, because here X; = 1 and
X, = 0. In the case of romance movies, our line will be Y = &, + b, + b X, because
in this case X, = 1 and X; = 0. Since the estimated coefficients 4, may be negative as
well as positive, the different parallel lines may position themselves above or below
one another, as determined by the data. Of course, the 5, may be estimates of zero.
If we did not reject the null hypothesis H: B; = 0, using the usual ¢ test, it would
mean that there was no evidence that the adventure and the drama lines were differ-
ent. That is, it would mean that, on average, adventure movies and drama movies
have the same gross earnings as determined by the production costs. If we determine
that B, is not different from zero, the adventure and romance lines will be the same
and the drama line may be different. In case the adventure line is different from
drama and romance, these two being the same, we would determine statistically that
both B, and B, are different from zero, but not different from each other.

If we have three regression lines, why bother with indicator variables at all?
Why not just run three separate regressions, each for a different movie category?
One answer to this question has already been given: The use of indicator variables
and their estimated regression coefficients with their standard errors allows us to fest
statistically whether the qualitative variable of interest has any effect on the depend-
ent variable. We are able to test whether we have one distinct line, two lines, three
lines, or as many lines as there are levels of the qualitative variable. Another reason
is that even if we know that there are, say, three distinct lines, estimating them
together via a regression analysis with dummy variables allows us to pool the
degrees of freedom for the three regressions, leading to better estimation and a more
efficient analysis.

Figure 11-23 shows the three regression lines of our new version of Example 11-3;
each line shows the regression relationship between a movie’s production cost and
the resulting movie’s gross earnings in its category. In case there are two independent
quantitative variables, say, if we add promotions as a second quantitative variable, we
will have three regression planes like the two planes shown in Figure 11-21. In Fig-
ure 11-23, we show adventure movies as triangles, romance movies as squares, and
drama movies as circles. Assuming that adventure movies have the highest average

FIGURE 11-23 The Three Possible Regression Lines, Depending on Movie Category
(modified Example 11-3)

y Line for X,= X;= 0

Slope = b,

Line for X, =1

= X;=0

by Slope = b,
Line for X,=0
X3=1

b, + b,

by + by

> X
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gross earnings, followed by romance and drama, the estimated coefficients &, and &,
have to be negative, as can be seen from the figure.

Can we run a regression on a qualitative variable (by use of dummy variables)
only? Yes. You have already seen this model, essentially. Running a regression on
a qualitative variable only means modeling some quantitative response by levels
of a qualitative factor: it is the analysis of variance, discussed in Chapter 9. Doing the
analysis by regression means using a different computational procedure than was
done in Chapter 9, but it is still the analysis of variance. Two qualitative variables
make the analysis a two-way ANOVA, and interaction terms are cross-products of the
appropriate dummy variables, such as X, X;. We will say more about cross-products a
little later. For now, we note that the regression approach to ANOVA allows us more
freedom. Remember that a two-way ANOVA, using the method in Chapter 9,
required a balanced design (equal sample size in each cell). If we use the regression
approach, we are no longer restricted to the balanced design and may use any sam-
ple size.

Let us go back to regressions using quantitative independent variables with some
qualitative variables. In some situations, we are not interested in using a regression
equation for prediction or for any of the other common uses of regression analysis.
Instead, we are intrinsically interested in a qualitative variable used in the regression.
Let us be more specific. Recall our original Example 11-3. Suppose we are not inter-
ested in predicting a movie’s gross earnings based on the production cost, promotions,
and whether the movie is based on a book. Suppose instead that we are interested
in answering the question: Is there a difference in average gross earnings between
movies based on books and movies not based on books?

To answer this question, we use the estimated regression relationship. We use the
estimate b, and its standard error in testing the null hypothesis H,: ; = 0 versus the
alternative Hy: B3 # 0. The question is really an ANOVA question. We want to
know whether a difference exists in the population means of the two groups of
movies based on books and movies not based on books. However, we have some
quantitative variables that affect the variable we are measuring (gross earnings). We
therefore incorporate information on these variables (production cost and promo-
tions) in a regression model aimed at answering our ANOVA question. When we
do this, that is, when we attempt to answer the question of whether differences in
population means exist, using a regression equation to account for other sources of
variation in our data (the quantitative independent variables), we are conducting an
analysis of covariance. The independent variables used in the analysis of covari-
ance are called concomitant variables, and their purpose in the analysis is not to
explain or predict the independent variable, but rather to reduce the errors in the
test of significance of the indicator variable or variables.

One of the interesting applications of analysis of covariance is in providing statis-
tical evidence in cases of sex or race discrimination. We demonstrate this particular
use in the following example.
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A large service company was sued by its female employees in a class action suit alleg-
ing sex discrimination in salary levels. The claim was that, on average, a man and a
woman of the same education and experience received different salaries: the man’s
salary was believed to be higher than the woman’s salary. The attorney representing
the women employees hired a statistician to provide statistical evidence supporting
the women’s side of the case. The statistician was allowed access to the company’s
payroll files and obtained a random sample of 100 employees, 40 of whom were
women. In addition to salary, the files contained information on education and expe-
rience. The statistician then ran a regression analysis of salary Y versus three vari-
ables: education level X| (on a scale based on the total number of years in school,
with an additional value added to the score for each college degree earned, by type),

EXAMPLE 11-4
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TABLE 11-13 Regression Results for Example 11-4

Variable Coefficient Estimate Standard Error
Constant 8,547 32.6
Education 949 451
Experience 1,258 78.5
Sex —3,256 212.4

years of experience X, (on a scale that combined the number of years of experience
directly related to the job assignment with the number of years of similar job experi-
ence), and gender X; (0 if the employee was a man and 1 if the employee was a
woman). The computer output for the regression included the results F ratio =
1,237.56 and R? = 0.67, as well as the coefficient estimates and standard errors given
in Table 11-13. Based on this information, does the attorney for the women employ-
ees have a case against the company?

Let us analyze the regression results. Remember that we are using a regression with
a dummy variable to perform an analysis of covariance. There is certainly a regres-
sion relationship between salary and at least some of the variables, as evidenced
by the very large Fvalue, which is beyond any critical point we can find in a table.
The p-value is very small. The coefficient of determination is not extremely high, but
then we are using very few variables to explain variation in salary levels. This being
the case, 67% explained variation, based on these variables only, is quite respectable.
Now we consider the information in Table 11-13.

Dividing the four coefficient estimates by their standard errors, we find that all
three variables are important, and the intercept is different from zero. However, we
are particularly interested in the hypothesis test:

Hy: B3 =0
Hi:B;#0

Our test statistic is £y = by/s(b;) = —3,256/212.4 = —15.33. Since ¢ with 96 degrees
of freedom [df = n — (k+ 1) = 100 — 4 = 96] is virtually a standard normal random
variable, we conduct this as a Z test. The computed test statistic value of —15.33 lies
very far in the left-hand rejection region. This means that there are two regressions:
one for men and one for women. Since we coded X, as 0 for a man and 1 for a
woman, the women’s estimated regression plane lies $3,256 below the regression
plane for men. Since the parameter of the sex variable is significantly different from
zero (with an extremely small p-value) and is negative, there is statistical evidence of
sex discrimination in this case. The situation here is as seen in Figure 11-21 for the
previous example: We have two regression planes, one below the other. The only dif-
ference is that in this example, we were not interested in using the regression for pre-
diction, but rather for an ANOVA-type statistical test.

CHAPTER 19

Interactions between Qualitative and Quantitative Variables

Do the different regression lines or higher-dimensional surfaces have to be parallel?
The answer is no. Sometimes, there are interactions between a qualitative variable and
one or more quantitative variables. The idea of an interaction in regression analysis
is the same as the idea of interaction between factors in a two-way ANOVA model
(as well as higher-order ANOVAs). In regression analysis with qualitative variables,
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FIGURE 11-24 Effects of an Interaction between a Qualitative Variable
and a Quantitative Variable
Y Line for X,= 0

Slope = b,
Line for X,=1

Slope = b, + b,

The two regression lines with different
intercepts and different slopes corresponding
to the estimated equation:

b,+ b.
o P = byt byX, + byX, + bsX,X,

> X

the interaction between a qualitative variable and a quantitative variable makes the
regression lines or planes at different levels of the dummy variables have different
slopes. Let us look at the simple case where we have one independent quantitative
variable X; and one qualitative variable with two levels, modeled by the dummy vari-
able X,. When an interaction exists between the qualitative and the quantitative vari-
ables, the slope of the regression line for X, = 0 is different from the slope of the
regression line for X, = 1. This is shown in Figure 11-24.

We model the interactions between variables by the cross-product of the vari-
ables. The interaction of X; with X, in this case is modeled by adding the term X, X,
to the regression equation. We are thus interested in the model

Y=8,+BX + BX + B XX, + e (11-21)

We can use the results of the estimation procedure to test for the existence of an inter-
action. We do so by testing the significance of parameter .

When regression parameters {3, B,, and B, are all nonzero, we have two distinct
lines with different intercepts and different slopes. When B, is zero, we have two lines
with the same intercept and different slopes (this is unlikely to happen, except when
both intercepts are zero). When (3, is zero, we have two parallel lines, as in the case
of equation 11-20. If B, is zero, of course, we have no regression—just an ANOVA
model; we then assume that 3, is also zero. Assuming the full model of equation 11-21,
representing two distinct lines with different slopes and different intercepts, the inter-
cept and the slope of each line will be as shown in Figure 11-24. By substituting X, = 0
or X, = 1 into equation 11-21, verify the definition of each slope and each intercept.

Again, estimating a single model for the different levels of the indicator variable
offers two advantages. These are the pooling of degrees of freedom (we assume that the
spread of the data about the two or more lines is equal) and an understanding of the
joint process generating the data. More important, we may use the model to statistically
test for the equality of intercepts and slopes. Note that when several indicator variables
are used in modeling one or more qualitative variables, the model has several possible
interaction terms. We will learn more about interactions in general in the next section.
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PROBLEMS

11-57. Echlin, Inc., makes parts for automobiles. The company is engaged in strong
competition with Japanese, Taiwanese, and Korean manufacturers of the same auto-
mobile parts. Recently, the company hired a statistician to study the relationship
between monthly sales and the independent variable, number of cars on the road.
Data on the explanatory variable are published in national statistical reports. Because
of the keen competition with Asian firms, an indicator variable was also used. This
variable was given the value 1 during months when restrictions on imports from Asia
were in effect and 0 when such restrictions were not in effect. Denoting sales by ¥,
total number of cars on the road by Xj, and the import restriction dummy variable
by X,, the following regression equation was estimated:

Y= —567.3 + 0.006X, + 26,540X,

The standard error of the intercept estimate was 38.5, that of the coefficient of X; was
0.0002, and the standard error of the coefficient of X, was 1,534.67. The multiple
coefficient of determination was R? = 0.783. The sample size used was n = 60
months (5 years of data). Analyze the results presented. What kind of regression
model was used? Comment on the significance of the model parameters and the
value of R%. How many distinct regression lines are there? What likely happens dur-
ing times of restricted trade with Asia?

11-58. A regression analysis was carried out based on 7,016 observations of firms,
aimed at assessing the factors that determine the level of a firm’s leverage. The inde-
pendent variables included amount of fixed assets, profitability, firm size, volatility,
and abnormal earnings level, as well as a dummy variable that indicated whether the
firm was regulated (1) or unregulated (0). The coefficient estimate for this dummy
variable was —0.003 and its standard error was —0.29.1 Does a firm’s being regulated
affect its leverage level? Explain.

11-59. If we have a regression model with no quantitative variables and only two
qualitative variables, represented by some indicator variables and cross-products,
what kind of analysis is carried out?

11-60. Recall our Club Med example of Chapter 9. Suppose that not all vacation-
ers at Club Med resorts stay an equal length of time at the resort—different people
stay different numbers of days. The club’s research director knows that people’s rat-
ings of the resorts tend to differ depending on the number of days spent at the resort.
Design a new method for studying whether there are differences among the average
population ratings of the five Caribbean resorts. What is the name of your method
of analysis, and how is the analysis carried out? Explain.

11-61. A financial institution specializing in venture capital is interested in predict-
ing the success of business operations that the institution helps to finance. Success
is defined by the institution as return on its investment, as a percentage, after
3 years of operation. The explanatory variables used are Investment (in thousands
of dollars), Early investment (in thousands of dollars), and two dummy variables
denoting the category of business. The values of these variables are (0, 0) for high-
technology industry, (0, 1) for biotechnology companies, and (1, 0) for aerospace
firms. Following is part of the computer output for this analysis. Interpret the out-
put, and give a complete analysis of the results of this study based on the provided
information.

“Matthew T. Billett, Tao-Hsien Dolly King, and David Mauer, “Growth Opportunities and the Choice of Leverage,
Debt Maturity, and Covenants,” Journal of Finance 42, no. 2 (2007), pp. 697-730.
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The regression equation is
Return = 6.16 + 0.617 INVEST + 0.151 EARLY + 11.1 DUM1 + 4.15 DUM2

Predictor Coef Stdev
Constant 6.162 1.642
INVEST 0.6168 0.1581
EARLY 0.1509 0.1465
DUM1 11.051 1.355
DUM2 4.150 1.315
s = 2.148 R-sg = 91.6% R-sg (adj) = 89.4%

Analysis of Variance

SOURCE DF SS
Regression 4 755.99
Error 15 69.21
Total 19 825.20

11-9 Polynomial Regression

Often, the relationship between the dependent variable Y and one or more of the
independent X variables is not a straight-line relationship but, rather, has some cur-
vature to it. Several such situations are shown in Figure 11-25 (we show the curved
relationship between Yand a single explanatory variable X). In each of the situations
shown, a straight line provides a poor fit to the data. Instead, polynomials of order
higher than 1, that is, functions of higher powers of X, such as X? and X3, provide
much better fit to our data. Such polynomials in the X variable or in several X; vari-
ables are still considered linear regression models. Only models where the parame-
ters 3; are not all of the first power are called nonlinear models. The multiple linear
regression model thus covers situations of fitting data to polynomial functions. The
general form of a polynomial regression model in one variable X is given in equa-
tion 11-22.

FIGURE 11-25 Situations Where the Relationship between X and Y Is Curved
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FIGURE 11-26  The Fits Provided for the Data Sets in Figure 11-25 by Polynomial Models
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A one-variable polynomial regression model is
Y=Bg + B X+ BX2+BX3+ - + B, X"+ e (11-22)

where m is the degree of the polynomial—the highest power of X appearing
in the equation. The degree of the polynomial is the order of the model.

Figure 11-26 shows how second- and third-degree polynomial models provide
good fits for the data sets in Figure 11-25. A straight line is also shown in each case, for
comparison. Compare the fit provided in each case by a polynomial with the poor fit
provided by a straight line. Some authors, for example, Cook and Weisberg, recom-
mend using polynomials of order no greater than 2 (the third-order example in
Figure 11-26 would be an exception) because of the overfitting problem.!” At any rate,
models should never be of order 6 or higher (unless the powers of X have been
transformed in a special way). Seber shows that when a polynomial of degree 6 or
greater is fit to a data set, a matrix involved in regression computations becomes /-
conditioned, which means that very small errors in the data cause relatively large errors
in the estimated model parameters.'® In short, we must be very careful with polynomial
regression models and try to obtain the most parsimonious polynomial model that
will fit our data. In the next section, we will discuss transformations of data that often
can change curved data sets into a straight-line form. If we can find such a transforma-
tion for a data set, it is always better to use a first-order model on the transformed data
set than to use a higher-order polynomial model on the original data. It should be intu-
itively clear that problems may arise in polynomial regression. The variables Xand X?,

7R. Dennis Cook and Sanford Weisberg, Applied Regression Including Computing and Graphics (New York: Wiley, 1999).
BGeorge A. F. Seber and Alan J. Lee, Linear Regression Analysis, 2nd ed. (New York: Wiley, 2003).
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for example, are clearly not independent of each other. This may cause the problem of
multicollinearity in cases where the data are confined to a narrow range of values.

Having seen what to beware of in using polynomial regression, now we see how
these models are used. Since powers of X can be obtained directly from the value of
variable X, it is relatively easy to run polynomial models. We enter the data into the
computer and add a command that uses X to form a new variable. In a second-order
model, we create an X? column using spreadsheet commands. Then we run a multiple
regression model with two “independent” variables: X and X?. We demonstrate this
with a new example.
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Sales response to advertising usually follows a curve reflecting the diminishing
returns to advertising expenditure. As a firm increases its advertising expenditure,
sales increase, but the rate of increase drops continually after a certain point. If we
consider company sales profits as a function of advertising expenditure, we find that
the response function can be very well approximated by a second-order (quadratic)
model of the form

Y=B,+B X+ BX>+e

A quadratic response function such as this one is shown in Figure 11-27.

It is very important for a firm to identify its own point X, shown in the figure.
At this point, a maximum benefit is achieved from advertising in terms of the
resulting sales profits. Figure 11-27 shows a general form of the sales response to
advertising. To find its own maximum point X, a firm needs to estimate its response-
to-advertising function from its own operation data, obtained by using different
levels of advertising at different time periods and observing the resulting sales profits.
For a particular firm, the data on monthly sales Y'and monthly advertising expenditure
X, both in hundred thousand dollars, are given in Table 11-14. The table also shows
the values of X2 used in the regression analysis.

FIGURE 11-27 A Quadratic Response Function of Sales Profits to Advertising Expenditure

Sales profits

X
Xm Advertising dollars

EXAMPLE 11-5
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TABLE 11-14  Data for Example 11-5

Row Sales Advert Advsqr
1 5.0 1.0 1.00
2 6.0 1.8 3.24
3 6.5 1.6 2.56
4 7.0 1.7 2.89
5 7.5 2.0 4.00
6 8.0 2.0 4.00
7 10.0 2.3 5.29
8 10.8 2.8 7.84
9 12.0 3.5 12.25

10 13.0 3.3 10.89

11 15.5 4.8 23.04

12 15.0 5.0 25.00

13 16.0 7.0 49.00

14 17.0 8.1 65.61

15 18.0 8.0 64.00

16 18.0 10.0 100.00
17 18.5 8.0 64.00
18 21.0 12.7 161.29
19 20.0 12.0 144.00
20 22.0 15.0 225.00
21 23.0 14.4 207.36

Figure 11-28 shows the data entered in the template. In cell E5, the formula “=D5°2”
has been entered. This calculates X2 The formula has been copied down through
cell E25. The regression results from the Results sheet of the template are shown in

FIGURE 11-28 Data for the Regression
[Multiple Regression.xls; Sheet: Data]

E5 v| =] =p52
A ] B [c] D | E | F | G
| 1 [Multiple Regression Example 11-5
2
| 3 | Y 1 X1 X2 X3 X
4 [SI.No. Sales Advert Advsqr
5 1 5|1 1 1
6 2 6|1 1.8 3.24
7 3 6.5] 1 1.6 2.56
8 4 7|1 1.7 2.89
9 5 7.5[1 2 4
10 6 8|1 2 4
11 7 10 1 2.3 5.29
12 8 10.8| 1 2.8 7.84
13 9 121 3.5 12.25
14 10 131 3.3 10.89
15 11 15.5] 1 4.8 23.04
16 12 15 1 5 25
17 13 16| 1 7 49
18 14 171 8.1 65.61
19 15 18 1 8 64
20 16 18 1 10 100
21 17 18.5| 1 8 64
22 18 211 12.7 161.29
23 19 201 12 144
24 20 221 15 225
25 21 231 14.4| 207.36
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TABLE 11-15 Results of the Regression
[Multiple Regression; Sheet: Results]
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0 1 2 3 4 5 6 7 8

Intercept | Advert Advsqgr

b | 351505 | 2.51478 | -0.0875

s(b) | 0.73840 | 0.25796 | 0.0166

-~

4.7599 9.7487 | -5.2751

p-value 0.0002 0.0000 0.0001

ANOVA Table
Source | SS df ms F [ Fouen | p-value |
Regn. | 630.258 2 31513 | 208.99 | 3.5546 | 0.0000 | s[_1.228]
Error 27.142 18 1.5079

Total 657.4 20 R 0.9587 Adjusted R?| 0.9541

Table 11-15. The coefficient of determination is R? = 0.9587, the Fratio is significant,
and both Advert and Advsqr are very significant. The minus sign of the squared vari-
able, Advsqr, is logical because a quadratic function with a maximum point has
a negative leading coefficient (the coefficient of X?). We may write the estimated
quadratic regression model of Yin terms of Xand X? as follows:

Y =352+ 251X 0.0875X2 + ¢ (11-23)

The equation of the estimated regression curve itself is given by dropping the error
term ¢, giving an equation for the predicted values Y that lie on the quadratic curve

Y =352 + 251X — 0.0875X2 (11-24)

In our particular example, the equation of the curve (equation 11-24) is of impor-
tance, as it can be differentiated with respect to X, with the derivative then set to zero
and the result solved for the maximizing value X, shown in Figure 11-27. (If you
have not studied calculus, you may ignore the preceding statement.) The result here
is x,, = 14.34 (hundred thousand dollars). This value maximizes sales profits with
respect to advertising (within estimation error of the regression). Thus, the firm
should set its advertising level at $1.434 million. The fact that polynomials can
always be differentiated gives these models an advantage over alternative models.
Remember, however, to keep the order of the model low.

Other Variables and Cross-Product Terms

The polynomial regression model in one variable X, given in equation 11-22, can
easily be extended to include more than one independent explanatory variable. The
new model, which includes several variables at different powers, is a mixture of the
usual multiple regression model in £ variables (equation 11-1) and the polynomial
regression model (equation 11-22). When several variables are in a regression equa-
tion, we may also consider interactions among variables. We have already encoun-
tered interactions in the previous section, where we discussed interactions between
an indicator variable and a quantitative variable. We saw that an interaction term is
just the cross-product of the two variables involved. In this section, we discuss the
general concept of interactions between variables, quantitative or not.
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The interaction term X, X; is a second-order term (the product of two variables is
classified the same way as an X? term). Similarly, XZ.XIQ-, for example, is a third-order
term. Thus, models that incorporate interaction terms find their natural place within
the class of polynomial models. Equation 11-25 is a second-order regression model
in two variables X; and X,. This model includes both first and second powers of both
variables and an interaction term.

Y= By + B X + BoXy + By XT +BXS + B X, X, + e (11-25)

A regression surface of a model like that of equation 11-25 is shown in Fig-
ure 11-29. Of course, many surfaces are possible, depending on the values of the
coefficients of all terms in the equation. Equation 11-25 may be generalized to more
than two explanatory variables, to higher powers of each variable, and to more inter-
action terms.

When we are considering polynomial regression models in several variables, it
is very important not to get carried away by the number of possible terms we can
include in the model. The number of variables, as well as the powers of these vari-
ables and the number of interaction terms, should be kept to a minimum.

How do we choose the terms to include in a model? This question will be answered
in Section 11-13, where we discuss methods of variable selection. You already know
several criteria for the inclusion of variables, powers of variables, and interaction terms
in a model. One thing to consider is the adjusted coefficient of determination. If this
measure decreases when a term is included in the model, then the term should be
dropped. Also, the significance of any particular term in a model depends on which
other variables, powers, or interaction terms are in the model. We must consider the
significance of each term by its ¢ statistic, and we must consider what happens to the
significance of regression terms once other terms are added to the model or removed
from it. For example, let us consider the regression output in Table 11-16.

The results in the table clearly show that only X;, X,, and X} are significant. The
apparent nonsignificance of X3 and X, X, may be due to multicollinearity. At any

FIGURE 11-29 An Example of the Regression Surface of a Second-Order Model
in Two Variables
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TABLE 11-16  Example of Regression Output for a Second-Order Model in Two Variables

Variable Estimate Standard Error t Ratio
X, 2.34 0.92 2.54
X, 3.11 1.05 2.96
X2 4.22 1.00 4.22
X2 3.57 2.12 1.68
XX, 2.77 2.30 1.20

rate, a regression without these last two variables should be carried out. We must also
look at R? and the adjusted R? of the different regressions, and find the most parsi-
monious model with statistically significant parameters that explain as much as possi-
ble of the variation in the values of the dependent variable. Incidentally, the surface
in Figure 11-29 was generated by computer, using all the coefficient estimates given
in Table 11-16 (regardless of their significance) and an intercept of zero.
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PROBLEMS

11-62. The following results pertain to a regression analysis of the difference
between the mortgage rate and the Treasury bill rate (SPREAD) on the shape of the
yield curve () and the corporate bond yields spread (R). What kind of regression
model is used? Explain.

SPREAD = 4, + ;S + bR+ b,S?> + b,S* R

11-63. Use the data in Table 11-6 to run a polynomial regression model of exports
to Singapore versus M1 and M1 squared, as well as Price and Price squared, and an
interaction term. Also try to add a squared exchange rate variable into the model.
Find the best, most parsimonious regression model for the data.

11-64. Use the data of Example 11-3, presented in Table 11-12, to try to fit a poly-
nomial regression model of movie gross earnings on production cost and production
cost squared. Also try promotion and promotion squared. What is the best, most par-
simonious model?

11-65. An ingenious regression analysis was reported in which the effects of the 1985
French banking deregulation were assessed. Bank equity was the dependent variable,
and each data point was a tax return for a particular quarter and bank in France from
1978 to the time the research was done. This resulted in 325,928 data points, assumed
a random sample. The independent variables were Bankdep—average debt in the
industry during this period; ROA—the given firm’s average return on assets for the
entire period, and After—0 before 1985, and 1 after 1985. The variables used in this
regression were all cross-products. These variables and their coefficient estimates (with
their standard errors) are given below.

After « Bankdep —0.398 (0.035)
After « Bankdep » ROA 0.155 (0.057)
After * ROA —0.072 (0.024)
Bankdep » ROA —0.286 (0.073)

The adjusted R* was 53%." Carefully analyze these results and try to draw a conclu-
sion about the effects of the 1985 French Banking Deregulation Act.

YMarianne Bertrand, Antoinette Schoar, and David Thesmar, “Banking Deregulation and Industry Structure:
Evidence from the French Banking Reforms of 1985,” Journal of Finance 42, no. 2 (2007), pp. 597-628.
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